首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   12篇
  免费   1篇
地球物理   2篇
地质学   3篇
海洋学   4篇
自然地理   4篇
  2019年   1篇
  2017年   1篇
  2014年   1篇
  2011年   4篇
  2007年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有13条查询结果,搜索用时 0 毫秒
1.
Using a combination of geophysical and geotechnical data from Storfjorden Trough Mouth Fan off southern Svalbard, we investigate the hydrogeology of the continental margin and how this is affected by Quaternary glacial advances and retreats over the continental shelf. The geotechnical results show that plumites, deposited during the deglaciation, have high porosities, permeabilities and compressibilities with respect to glacigenic debris flows and tills. These results together with margin stratigraphic models obtained from seismic reflection data were used as input for numerical finite element models to understand focusing of interstitial fluids on glaciated continental margins. The modelled evolution of the Storfjorden TMF shows that tills formed on the shelf following the onset of glacial sedimentation (ca. 1.5 Ma) acted as aquitards and therefore played a significant role in decreasing the vertical fluid flow towards the sea floor and diverting it towards the slope. The model shows that high overpressure ratios (up to λ ca. 0.6) developed below the shelf edge and on the middle slope. A more detailed model for the last 220 kyrs accounting for ice loading during glacial maxima shows that the formation of these aquitards on the shelf focused fluid flow towards the most permeable plumite sediments on the slope. The less permeable glacigenic debris flows that were deposited during glacial maxima on the slope hinder fluid evacuation from plumites allowing high overpressure ratios (up to λ ca. 0.7) to develop in the shallowest plumite layers. These high overpressures likely persist to the Present and are a critical precondition for submarine slope failure.  相似文献   
2.
The Messinian Salinity Crisis (MSC) resulted from a significant multi-phase drop and subsequent reflooding of the Mediterranean Sea from 5.96 to 5.33 Ma. Well-developed drainage networks, characterized by step-like profiles and abrasion platforms, are associated to this event. The Ebro Continental Margin (Western Mediterranean) presents an additional complexity since the capture of the drainage of the adjacent subaerial Ebro Basin took place sometime prior to the Messinian stage. Using 3D seismic reflection data, this work provides new insights into the origin of the step-like profile of the Messinian erosional surface (MES) and timing of the capture of the subaerial Ebro Basin. The results obtained indicate a sedimentary-active continental slope and delta progradation during Middle-Late Miocene, in a normal regressive context associated to a pre-Messinian proto-Ebro River. The mature development attained by the Messinian Ebro River network during the MSC corroborates that the capture of the Ebro Basin occurred prior to the MSC. The configuration of the clinoforms below the MES suggests that deltaic sediments of the Messinian Paleo-Ebro River deposited during the Tortonian and initial Messinian sea-level drawdown. The MES formed at the top of the Tortonian Highstand, where a fluvial network was deeply carved, and in the topset region of the Messinian Falling Stage Systems Tract, where minor erosion occurred. Fluvial deposits are outstandingly preserved on the main valleys of the MES. Therefore, the step-like profile of the MES was not created during Zanclean inundation, but during the latest stages of the main Messinian sea-level fall and lowstand.  相似文献   
3.
Most Mediterranean prodeltas show undulated sediment features on the foresets of their Holocene wedges. These features have been described all along the Mediterranean for the last 30 years and interpreted as either soft sediment deformation and incipient landsliding, and more recently, as sediment transport structures. We perform a review and detailed analysis of these undulated sediment features using ultrahigh-resolution seismic and bathymetric data as well as geotechnical information and hydrodynamic time series and hydrographic transects. In this study we show that the characteristics of the sediment undulations (configuration of the reflections down section and between adjacent undulations and overall morphologic characteristics) are incompatible with a genesis by sediment deformation alone and do not show evidence of sediment deformation in most cases. Various processes in the benthic boundary layer can be invoked to explain the variety of features observed in the numerous areas displaying sediment undulations.  相似文献   
4.
5.
The Barcelona continental shelf, off the city of Barcelona (NE Spain), is a relatively narrow canyon-bounded shelf in the northwestern Mediterranean Sea. Three medium-size rivers (Tordera, Besós and Llobregat) and several ephemeral rivulets flow into this margin. Two main domains have been recognized in the Barcelona shelf: (i) a modern, river-influenced area, and (ii) a relict, sediment depleted area, both affected by a variety of human impacts. A detailed geomorphologic study based on multibeam bathymetry and backscatter data, high resolution seismic profiles, and surface sediment samples allowed mapping and interpreting the main distinctive seafloor features on the Barcelona shelf. Modern sedimentary features reveal that the Llobregat River is the main sediment source of the Barcelona prodeltaic shelf. High-discharge fluvial events result in the formation of suspended sediment plumes and sediment waves on the shelf floor. Relict (late Pleistocene–Holocene) sedimentary features reflect that an important shift occurred in the seashore direction between MIS 4 and MIS 2, and that recent neotectonic reactivation has created a set of seafloor faults. The Barcelona inner and middle shelf is severely impacted by anthropogenic activities such as the enlargement works of the Port of Barcelona, sewage pipes, dredging, anchoring and trawling.  相似文献   
6.
Fluid flow from pore pressure measurements off La Palma, Canary Islands   总被引:1,自引:0,他引:1  
In situ subseafloor pore pressure results from the western flank of the island of La Palma, Canary Islands, are presented. The data obtained with a Pop Up Pore Pressure Instrument (PUPPI) provide constraints on the fluid circulation and its causes in a very special context: The sediment piles near an intraplate oceanic island built on the continental rise of the Northwest African Margin. The ambient pore pressures estimated from 2 to 4 days long record are negative in almost all cases with values, at depths of a few meters below sea floor, usually on the order of −10 to −70 Pa. Excess pore pressures develop only in the distal most areas. The permeabilities and compressibilities obtained respectively from the decay of the insertion pressures and the amplitude of the tidally induced pore pressure variations range between 2.5×10−18 and 6.6×10−16 m2 and, 6.2×10−9 and 1.5×10−7 Pa−1. According to these permeabilities fluid flow is estimated to be mostly downward and usually on the range between 0 and −0.3 mm y−1. However, from the excess pore pressure profile a complex pattern of fluid circulation is inferred where horizontal fluid motion cannot be neglected. Horizontal flow is probably controlled by significant contrasts in the permeability of the different layers. The prevailing downward fluid flow is abnormal for a classical passive margin. We thus interpret these results as the superposition to the loss of fluids by sediment compaction (on the continental rise), of a large-scale flow system stimulated by thermal buoyancy (100 km wide) related to the volcanic activity on the island of La Palma.  相似文献   
7.
In this study, detailed mapping of the ‘Messinian markers’ and examination of their geometrical relationships in the SW Valencia trough (Western Mediterranean) have revealed the style and depositional processes associated with emersion of continental margins during the Messinian Salinity Crisis (MSC). Based on multichannel seismic profiles and well data, this article evidences the existence of two Messinian depositional units in intermediate basins (Complex Unit and Upper Unit) and four main Messinian erosional surfaces (Margin Erosion Surface, Bottom Surface, Top (Erosion) Surface and Intermediate Surface). Results show that (1) initial rapid sea‐level drawdown and exposure of the shelf and upper slope of the Valencia margin induced large‐scale destabilization of the continental slope and deposition of large detrital bodies at the base‐of‐slope in the form of major mass‐transport deposits (MTD); (2) as sea level continued to drop, the development of the Margin Erosion Surface attained full development on the margins and eroded the clastic units (MTDs) deposited during initial drawdown. At the same time, a submarine drainage network formed in the deepwater Valencia trough; (3) persistent lowstand and restrictive conditions in the area resulted in deposition of the evaporites that form the Upper Unit in the SW Valencia trough.  相似文献   
8.
We present new 3D seismic and well data from the Ebro Margin, NW Mediterranean Sea, to shed new light on the processes that formed the Messinian Erosion Surfaces (MES) of the Valencia Trough (Mediterranean Sea). We combine these data with backstripping techniques to provide a minimum estimate of the Messinian sea level fall in the EBRO Margin, as well as coupled isostasy and river incision and transport modeling to offer new constraints on the evolution of the adjacent subaerial Ebro Basin. Four major seismic units are identified on the Cenozoic Ebro Margin, based on the seismic data, including two major prograding megasequences that are separated by a major unconfirmity: the MES. The 3D seismic data provide an unprecedented view of the MES and display characteristic features of subaerial incision, including a drainage network with tributaries of at least five different orders, terraces and meandering rivers. The Messinian landscape presents a characteristic stepped‐like profile that allows the margin to be subdivided in three different regions roughly parallel to the coastline. No major tectonic control exists on the boundaries between these regions. The boundary between the two most distal regions marks the location of a relatively stable base level, and this is used in backstripping analysis to estimate the magnitude of sea level drop associated with the Messinian Salinity Crisis on the Ebro Margin. The MES on the Ebro Margin is dominated by a major fluvial system, that we identify here as the Messinian Ebro River. The 3D seismic data, onshore geology and modeling results indicate that the Ebro River drained the Ebro Basin well in advance of the Messinian.  相似文献   
9.
The Canary Debris Flow: source area morphology and failure mechanisms   总被引:6,自引:0,他引:6  
The morphology of the source area of the Canary Debris Flow has been mapped using both GLORIA reconnaissance and TOBI high-resolution sidescan sonar systems. West of ≈19°W, the seafloor is characterized by a strongly lineated downslope-trending fabric. This fabric can be interpreted as being caused by streams of debris separated by longitudinal shears. Multiple flow pulses are indicated by a series of asymmetrical lateral ridges which mark the northern boundary of the flow. East of ≈19°W, GLORIA data show only a weak fabric of irregular patches and alongslope lineaments. The TOBI data show the patches to be coherent sediment blocks up to 10 km across, surrounded by debris flow material. These are interpreted as in situ areas of seafloor sediment which have survived the slope failure and debris flow event rather than transported fragments of a failed sediment slab. TOBI data from the best developed area of alongslope lineaments show a series of small faults downstepping to the west. This area of seafloor is interpreted as one of partial sediment failure, where the failure process became ‘frozen’ before total mobilization of the seafloor sediments could occur. The overall morphology of the failure area indicates removal of a slab-like body of sediment, although we cannot distinguish between retrogressive and slab-slide failure mechanisms. If the latter mechanism is applicable, fragmentation of the failing ‘slab’ must have commenced concurrently with the onset of downslope transport. Immediately upslope from the debris flow source area, a seafloor of characteristic rough blocky texture is interpreted as the surface of a debris avalanche derived from the slopes of the island of El Hierro. The debris flow and avalanche appear to be simultaneous events, with failure of the slope sediments occurring while the avalanche deposits were still mobile enough to fill and disguise the topographic expression of the debris flow headwall. Loading of the slope sediments by the debris avalanche most probably triggered the Canary Debris Flow.  相似文献   
10.
The Outardes Bay delta constitutes one of the best sites to study the formation of failure deposits in a modern lowstand environment. These deposits are located in a pseudo-shelf-edge position along the northern part of the Laurentian Channel in the St. Lawrence Estuary. The site has been investigated over the past 20 years with a Raytheon model RTT1000 boomer (3.5 kHz, 400 J) on the shelf, and most recently with a Simrad model EM 1000 multibeam sonar (95 kHz) on the slope to provide high-resolution seismic and bathymetric data. The seismic data show wavy, chaotic and contorted reflectors which are typical in marine environments characterised by instability features. The multibeam sonar data have revealed many slope instability features such as creep folds, channel incisions, debris flows, and rotational slide scars. Thus, these interpreted features are in direct relationship with the seismic interpretation of the data collected upslope. These geomorphological and geophysical signatures express both past and present sedimentological processes. Some of the mass movement signatures observed in the surveyed area are believed to be related with the great MS~7 Charlevoix earthquake in 1663.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号