首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   130篇
  免费   3篇
测绘学   2篇
大气科学   11篇
地球物理   31篇
地质学   21篇
海洋学   21篇
天文学   38篇
综合类   1篇
自然地理   8篇
  2021年   2篇
  2019年   1篇
  2018年   2篇
  2017年   2篇
  2016年   5篇
  2015年   4篇
  2014年   9篇
  2013年   11篇
  2012年   5篇
  2011年   7篇
  2010年   5篇
  2009年   9篇
  2008年   7篇
  2007年   4篇
  2006年   6篇
  2005年   5篇
  2004年   5篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   1篇
  1995年   2篇
  1994年   4篇
  1993年   5篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1977年   3篇
  1976年   3篇
  1973年   1篇
  1972年   1篇
  1971年   1篇
排序方式: 共有133条查询结果,搜索用时 15 毫秒
1.
The rotation of the surface layer of the Sun is found to have been accelerated secularly from the sunspot data of 1943 to 1986. To represent the overall state of rotation of the differentially rotating Sun, we define an indexM, by integrating the angular momentum density over the whole surface of the Sun, and call it the angular momentum layer density. The indexM increased monotonically or secularly from 1943 to 1986. This period corresponds to solar cycles 18, 19, 20, and 21. The monotonic increase ofM indicates that a net angular momentum must have steadily been coming from the layer down below the surface. The differential rotation latitudinal dependence profile did not change much from cycle 18 to cycle 20, but at cycle 21 the degree of equatorial acceleration dropped. This aspect is discussed in the context of the 55-year grand cycle. Cycle 21 is the start of grand cycle VI. The latitudinal dependence is less steep at cycle 21. The time scale of secular change of the indexM reflects the time scale of change of linkage of the surface and the deep layer in form of the angular momentum transfer, and that the time scale of the profile change of the differential rotation reflects the time scale of the angular momentum transfer within the surface layer.  相似文献   
2.
Temporal changes in nitrogen isotopic composition (δ15N) of the NO3 pool in the water column below the pycnocline in Ise Bay, Japan were investigated to evaluate the effect of nitrification on the change in the δ15N in the water column. The δ15N of NO3 in the lower layers varied from −8.5‰ in May to +8.4‰ in July in response to the development of seasonal hypoxia and conversion from NH4 + to NO3 . The significantly 15N-depleted NO3 in May most likely arose from nitrification in the water column. The calculated apparent isotopic discrimination for water column nitrification (ɛnit = δ15Nsubstrate − δ15Nproduct) was 24.5‰, which lies within the range of previous laboratory-based estimates. Though prominent deficits of NO3 from hypoxic bottom waters due to denitrification were revealed in July, the isotopic discrimination of denitrification in the sediments was low (ɛdenit = ∼1‰). δ15NNO3 in the hypoxic lower layer mainly reflects the isotopic effect of water column nitrification, given that water column nitrification is not directly linked with sedimentary denitrification and the effect of sedimentary denitrification on the change in δ15NNO3 is relatively small.  相似文献   
3.
The relation between the systematic time variations of the solar differential rotation at middle latitudes and the asymmetry of global distribution of the solar activity is discussed in connection with the study of the maintenance of the solar differential rotation. The systematic variations at middle latitudes are inferred from a peculiar correlation in the time variations of the solar differential rotation which is shown in this paper to be implied in the data of Howard and Harvey (1970) of spectroscopic measurements of rotational velocities. If we adopt the working hypothesis of the solar equatorial acceleration maintained by the angular momentum transport due to the very large scale convection, the two phenomena are related through the concurrent presence of the neighboring modes with the presumed dominant mode of the very large scale convection.  相似文献   
4.
The phase relation of the poloidal and toroidal components of the solar-cycle general magnetic fields, which propagate along isorotation surfaces as dynamo waves, is investigated to infer the structure of the differential rotation and the direction of the regeneration action of the dynamo processes responsible for the solar cycle. It is shown that, from the phase relation alone, (i) the sign of the radial gradient of the differential rotation (/r) can be determined in the case that the radial gradient dominates the differential rotation, and (ii) the direction of the regeneration action can be determined in the case that the latitudinal gradient (/) dominates the differential rotation. Examining the observed poloidal and toroidal fields, it is concluded that (i) the / should dominate the differential rotation, and (ii) the determined sign of the regeneration factor (positive [negative] in the northern [southern] hemisphere) describing the direction of the regeneration action requires that the surface magnetic fields should originate from the upper part of the convection zone according to the model of the solar cycle driven by the dynamo action of the global convection.  相似文献   
5.
The generation of vapor‐phase contaminant plumes within the vadose zone is of interest for contaminated site management. Therefore, it is important to understand vapor sources such as non‐aqueous‐phase liquids (NAPLs) and processes that govern their volatilization. The distribution of NAPL, gas, and water phases within a source zone is expected to influence the rate of volatilization. However, the effect of this distribution morphology on volatilization has not been thoroughly quantified. Because field quantification of NAPL volatilization is often infeasible, a controlled laboratory experiment was conducted in a two‐dimensional tank (28 cm × 15.5 cm × 2.5 cm) with water‐wet sandy media and an emplaced trichloroethylene (TCE) source. The source was emplaced in two configurations to represent morphologies encountered in field settings: (1) NAPL pools directly exposed to the air phase and (2) NAPLs trapped in water‐saturated zones that were occluded from the air phase. Airflow was passed through the tank and effluent concentrations of TCE were quantified. Models were used to analyze results, which indicated that mass transfer from directly exposed NAPL was fast and controlled by advective‐dispersive‐diffusive transport in the gas phase. However, sources occluded by pore water showed strong rate limitations and slower effective mass transfer. This difference is explained by diffusional resistance within the aqueous phase. Results demonstrate that vapor generation rates from a NAPL source will be influenced by the soil water content distribution within the source. The implications of the NAPL morphology on volatilization in the context of a dynamic water table or climate are discussed.  相似文献   
6.
7.
Hydrographic and biogeochemical observations were conducted along the longitudinal section from Ise Bay to the continental margin (southern coast of Japan) to investigate changes according to the Kuroshio path variations during the summer. The strength of the uplift of the cold deep water was influenced by the surface intrusion of the Kuroshio water to the shelf region. When the intrusion of the Kuroshio surface water to the shelf region was weak in 2006, the cold and NO3-rich shelf water intruded into the bottom layer in the bay from the shelf. This bottom intrusion was intensified by the large river discharge. The nitrogen isotope ratio (δ15N) of NO3 (4–5‰) in the bottom bay water was same as that in the deeper NO3 over the shelf, indicating the supply of new nitrogen to the bay. The warm and NO3-poor shelf water intruded into the middle layer via the mixing region at the bay mouth when the Kuroshio water distributed in the coastal areas off Ise Bay in 2005. The regenerated NO3 with isotopically light nitrogen (δ15N=−1‰) was supplied from the shelf to the bay. This NO3 is regenerated by the nitrification in the upper layer over the shelf. The contribution rate of regenerated NO3 over the shelf to the total NO3 in the subsurface chlorophyll maximum layer in the bay was estimated at 56% by a two-source mixing model coupled with the Rayleigh equation.  相似文献   
8.
A fully coupled regional ocean-atmosphere model system that consists of the regional spectral model and the regional ocean modeling system for atmosphere and ocean components, respectively, is applied to downscale the present climate (1985–1994) over California from a global simulation of the Community Climate System Model 3.0 (CCSM3). The horizontal resolution of the regional coupled modeling system is 10 km, while that of the CCSM3 is at a spectral truncation of T85 (approximately 1.4°). The effects of the coupling along the California coast in the boreal summer and winter are highlighted. Evaluation of the sea surface temperature (SST) and 2-m air temperature climatology shows that alleviation of the warm bias along the California coast in the global model output is clear in the regional coupled model run. The 10-m wind is also improved by reducing the northwesterly winds along the coast. The higher resolution coupling effect on the temperature and specific humidity is the largest near the surface, while the significant impact on the wind magnitude appears at a height of approximately 850-hPa heights. The frequency of the Catalina Eddy and its duration are increased by more than 60 % in the coupled downscaling, which is attributed to enhanced offshore sea-breeze. Our study indicates that coupling is vital to regional climate downscaling of mesoscale phenomena over coastal areas.  相似文献   
9.
This study examines a future climate change scenario over California in a 10-km coupled regional downscaling system of the Regional Spectral Model for the atmosphere and the Regional Ocean Modeling System for the ocean forced by the global Community Climate System Model version 3.0 (CCSM3). In summer, the coupled and uncoupled downscaled experiments capture the warming trend of surface air temperature, consistent with the driving CCSM3 forcing. However, the surface warming change along the California coast is weaker in the coupled downscaled experiment than it is in the uncoupled downscaling. Atmospheric cooling due to upwelling along the coast commonly appears in both the present and future climates, but the effect of upwelling is not fully compensated for by the projected large-scale warming in the coupled downscaling experiment. The projected change of extreme warm events is quite different between the coupled and uncoupled downscaling experiments, with the former projecting a more moderate change. The projected future change in precipitation is not significantly different between coupled and uncoupled downscaling. Both the coupled and uncoupled downscaling integrations predict increased onshore sea breeze change in summer daytime and reduced offshore land breeze change in summer nighttime along the coast from the Bay area to Point Conception. Compared to the simulation of present climate, the coupled and uncoupled downscaling experiments predict 17.5 % and 27.5 % fewer Catalina eddy hours in future climate respectively.  相似文献   
10.
The concept of the solar general magnetic field is extended from that of the polar fields to the concept of any axisymmetric fields of the whole Sun. The poloidal and toroidal general magnetic fields are defined and diagrams of their evolutionary patterns are drawn using the Mount Wilson magnetic synoptic chart data of Carrington rotation numbers from 1417 to 1620 covering approximately half of cycle 19 and cycle 20. After averaging over many rotations long-term regularities appear in the patterns. The diagrams of the patterns are compared with the Butterfly Diagram of sunspots of the same period. The diagram of the poloidal field shows that the Sun behaves like a magnetic quadrupole, each hemisphere having two branches of opposite polarities with mirror images on the other hemisphere. This was predicted by a solar cycle model driven by the dynamo action of the global convection by Yoshimura and could serve as a verification of the model. The diagram of the toriodal field is similar to the Butterfly Diagram of sunspots. The slight differences which do exist between the two diagrams seems to show that the fields responsible for the two may originate from different zones of the Sun. Common or different characteristics of the three diagrams are examined in terms of dynamical structure of the convection zone referring to the theoretical model of the solar cycle driven by the dynamo action of the global convection.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号