首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   1篇
地质学   3篇
海洋学   5篇
天文学   1篇
自然地理   1篇
  2016年   1篇
  2015年   1篇
  2010年   3篇
  2009年   1篇
  2006年   1篇
  2003年   1篇
  1994年   2篇
排序方式: 共有10条查询结果,搜索用时 62 毫秒
1
1.
M. Taviani 《Geo-Marine Letters》1994,14(2-3):185-191
Recent suggestions that the Miocene-age calcari aLucina blocks scattered in the Apennine chain of the Italian peninsula are methanogenic in nature (paleo cold vents) calls for a reexamination of their macrofauna. Two Tortonian-age outcrops of such limestones (Case Rovereti and Montepetra) have been analyzed for their mollusk content and shown to host a diverse vent fauna. The paleoassemblages show remarkable similarities with modern counterparts associated with hydrocarbon venting on the Gulf of Mexico continental slope. Faunal data from both sites lend support to the hypothesis that methane/hydrocarbon venting was active during the Miocene and sustained specialized bathyal chemosynthetic communities in the ancient Mediterranean.  相似文献   
2.
Multidisciplinary study of seep-related structures on Southern Vøring Plateau has been performed during several UNESCO/IOC TTR cruises on R/V Professor Logachev. High-resolution sidescan sonar and subbottom profiler data suggest that most of the studied fluid discharge structures have a positive relief at their central part surrounded by depression. Our data shows that the present day fluid activity is concentrated on the top of these “seep mounds”. Number of high hydrocarbon (HC) gas saturated sediment cores and 5 cores with gas hydrate presence have been recovered from these structures. δ13C of methane (between −68 and −94.6‰ VPDB) and dry composition of the gas points to its biogenic origin. The sulfate depletion generally occurs within the upper 30–200 cm bsf and usually coincides with an increase of methane concentration. Pore water δ18O ranges from 0.29 to 1.14‰ showing an overall gradual increase from bottom water values (δ18O ∼ 0.35‰). Although no obvious evidence of fluid seepage was observed during the TV surveys, coring data revealed a broad distribution of living Pogonophora and bacterial colonies on sea bottom inside seep structures. These evidences point to ongoing fluid activity (continuous seepage of methane) through these structures. From other side, considerable number and variety of chemosynthetic macro fauna with complete absence of living species suggest that present day level of fluid activity is significantly lower than it was in past. Dead and subfossil fauna recovered from various seep sites consist of solemyid (Acharax sp.), thyasirid and vesicomyid (cf. Calyptogena sp.) bivalves belonging to chemosymbiotic families. Significant variations in δ13C (−31.6‰ to −59.2‰) and δ18O (0.42‰ and 6.4‰) of methane-derived carbonates collected from these structures most probably related to changes in gas composition and bottom water temperature between periods of their precipitation. This led us to ideas that: (1) seep activity on the Southern Vøring Plateau was started with large input of the deep thermogenic gas and gradually decries in time with increasing of biogenic constituent; (2) authigenic carbonate precipitation started at the near normal deep sea environments with bottom water temperature around +5 °C and continues with gradual cooling up to negative temperatures recording at present time.  相似文献   
3.
4.
Evidence of hydrocarbon venting within slumped bodies associated with the siliciclastic, dominantly turbiditic, Marnoso-arenacea Formation (Umbria-Romagna structural domain, Romagna Apennine, northern Italy) is documented with sedimentological, faunal, and geochemical data. Specifically,13C-depleted carbonate concretions and limestones and clusters of chemosynthetic clams (Vesicomyidae) have been identified in the marls of the Le Caselle Olistostrome and other slumped bodies contained within the Early Serravallian section of the Marnoso-arenacea Fm. Most of the olistostrome marls and limestones are extrabasinal and must have slid from a source area located several kilometers southwest of their present position. Thus, they presumably pertain to the Vicchio Marls Formation of the northeastern (outer) Tuscan structural domain, with possible minor contributions from the epi-Ligurian Bismantova Fm. It is suggested that venting of methane in the source area of the olistostromes permitted the establishment of exotic chemosynthetic communities and promoted the precipitation of carbonate concretions and limestones. According to the field evidence, these materials were later subjected to multistep downslope remobilization and were eventually carried into the Marnoso-arenacea basin through gravity mass transport.  相似文献   
5.
A revised stratigraphic framework for the Messinian succession of Cyprus is proposed demonstrating that the three‐stage model for the Messinian salinity crisis recently established for the Western Mediterranean also applies to the Eastern Mediterranean, at least for its marginal basins. This analysis is based on a multidisciplinary study of the Messinian evaporites and associated deposits exposed in the Polemi, Pissouri, Maroni/Psematismenos and Mesaoria basins. Here, we document for the first time that the base of the unit usually referred to the ‘Lower Evaporites’ in Cyprus does not actually correspond to the onset of the Messinian salinity crisis. The basal surface of this unit rather corresponds to a regional‐scale unconformity, locally associated with an angular discordance, and is related to the erosion and resedimentation of primary evaporites deposited during the first stage of the Messinian salinity crisis. This evidence suggests that the ‘Lower Evaporites’ of the southern basins of Cyprus actually belong to the second stage of the Messinian salinity crisis; they can be thus ascribed to the Resedimented Lower Gypsum unit that was deposited between 5.6 and 5.5 Ma and is possibly coeval to the halite deposited in the northern Mesaoria basin. Primary, in situ evaporites of the first stage of the Messinian salinity crisis were not preserved in Cyprus basins. Conversely, shallow‐water primary evaporites deposited during the third stage of the Messinian salinity crisis are well preserved; these deposits can be regarded as the equivalent of the Upper Gypsum of Sicily. Our study documents that the Messinian stratigraphy shows many similarities between the Western and Eastern Mediterranean marginal basins, implying a common and likely coeval development of the Messinian salinity crisis. This could be reflected also in intermediate and deep‐water basins; we infer that the Lower Evaporites seismic unit in the deep Eastern Mediterranean basins could well be mainly composed of clastic evaporites and that its base could correspond to the Messinian erosional surface.  相似文献   
6.
ABSTRACT Calcarenitic bodies punctuate the shallow-water deposits of Plio-Pleistocene Mediterranean basins. Their rhythmic stacking pattern and stratigraphic distribution suggest a close relationship with deep-water sapropel cycles, whose development is controlled by periodic changes in the Earth's orbital parameters. Calcarenitic bodies occur as eccentricity-controlled clusters (over periods of 100–400 kyr) showing a time-correlation with sapropel clusters, starting from 3.1 Ma. Formation of individual calcarenites is possibly driven by obliquity and/or precession cyclicity. This has important implications both for an improved understanding of Mediterranean palaeoceanographic events and correlation of shallow- and deep-water successions. The appearance of sapropel and calcarenitic clusters starting from 3.1 Ma suggests a direct link with the onset of Northern Hemisphere glaciation, which could be responsible for the amplification of oceanographic events within the Mediterranean.  相似文献   
7.
The precious red coral Corallium rubrum (L., 1758) lives in the Mediterranean Sea and adjacent Eastern Atlantic Ocean on subtidal hard substrates. Corallium rubrum is a long‐lived gorgonian coral that has been commercially harvested since ancient times for its red axial calcitic skeleton and which, at present, is thought to be in decline because of overexploitation. The depth distribution of C. rubrum is known to range from c. 15 to 300 m. Recently, live red coral colonies have been observed in the Strait of Sicily at depths of c. 600–800 m. This record sheds new light on the ecology, biology, biogeography and dispersal mechanism of this species and calls for an evaluation of the genetic divergence occurring among highly fragmented populations. A genetic characterization of the deep‐sea red coral colonies has been done to investigate biological processes affecting dispersal and population resilience, as well as to define the level of isolation/differentiation between shallow‐ and deep‐water populations of the Mediterranean Sea. Deep‐water C. rubrum colonies were collected at two sites (south of Malta and off Linosa Island) during the cruise MARCOS of the R/V Urania. Collected colonies were genotyped using a set of molecular markers differing in their level of polymorphism. Microsatellites have been confirmed to be useful markers for individual genotyping of C. rubrum colonies. ITS‐1 and mtMSH sequences of deep‐water red coral colonies were found to be different from those found in shallow water colonies, suggesting the possible occurrence of genetic isolation among shallow‐ and deep‐water populations. These findings suggest that genetic diversity of red coral over its actual range of depth distribution is shaped by complex interactions among geological, historical, biological and ecological processes.  相似文献   
8.
9.
A conspicuous new deep-sea oyster, Neopycnodonte zibrowii sp. n., is described from the Azores Archipelago, where it thrives in 420 to >500 m water depth in high densities concealed underneath overhangs. The new species reaches a relatively large size, which may exceed 20 cm, and is characterised by a very unusual hinge line morphology, straight without a bulge of the resilium. It is compared to the extant Indo-Pacific Empressostrea kostini Huber and Lorenz, 2007 and to the cosmopolitan Neopycnodonte cochlear (Poli, 1791), which has a broadly sympatric distribution at shallower depths in the Azores and Bay of Biscay. Radiocarbon dating reveals that individuals reach an impressive lifespan of one to more than five centuries, placing them among the longest-lived molluscs known to date. They often grow on top of each other, forming stacks that resemble dish piles—an effective measure to optimise shell stability with minimal biomineralisation effort, but with the drawback of increased bioerosion ultimately leading to detachment.Three microstructure types are developed in N. zibrowii: (1) the cross-foliated, calcitic, dorsal to central endostracum and aragonitic ligostracum, (2) the porous vesicular structure of the calcitic ventral endostracum, and (3) the simple prismatic aragonitic myostracum. Foliated and vesicular shell portions show sub-millimetre-scale first-order increments delineated by conchiolin-rich growth breaks (interpreted as reproductive cyclicity), and less distinct second-order increments (interpreted as annual in nature). This pattern is clearly reflected by the elemental composition with the primary growth breaks lacking Ca and Sr but including Mg and S as organic matrix constituents. The second-order increments within the calcite are mirrored by moderately co-varying Mg/Ca and S/Ca fluctuations at stable Sr concentrations, reflecting varying proportions of organic matrix. Dorsal and central endostracum transects reveal a low inter-valve, but considerable inter-specimen variability with high Mg/Ca molar ratios and fluctuations (22.5±17.6 mmol/mol), low Sr/Ca values (0.2±0.1 mmol/mol), and a typical to high S/Ca content (6.9±2.2 mmol/mol), when compared to other calcitic bivalves.Unlike short-lived, shallow-water oysters, N. zibrowii thrives under very stable environmental conditions. Minimal temperature fluctuations and stable open marine salinity provide an optimal basis to recognise biological fractionation processes. Strong Mg/Ca fluctuations indicate a physiological control related to metabolism and biomineralisation, prohibiting the use of this ratio as a temperature or ocean chemistry proxy. Low Sr/Ca ratios indicate rather constant and low long-term accretion rates, while short-scale fluctuations may be attributed to short-term variations in growth rate and Mg incorporation. Oxygen isotopes yield a considerable spread of 1.8‰ with a mean of 2.0±0.3‰ δ18O V-PDB, and low correlation between different contemporaneous parts of the shell and between specimens. These values surprisingly exceed expected equilibrium conditions, calculated from in situ temperature data (annual mean 12.3±0.3 °C) and seawater isotopic composition (0.5±0.1‰ δ18O SMOW), by 0.5‰ on average. Such positively shifting vital effects, previously reported for limpets and barnacles, are often overlooked in high-temperature and high-amplitude settings and may be more common than is currently believed. Carbon isotopes range from 0.2 to 3.5‰ δ13C V-PDB (mean 1.8±0.7‰) and show an ontogenetic decrease, but may incorporate an environmental signal in adult portions, indicated by a strong correspondence of peaks between specimens. This signal is likely driven by a complex interplay of different factors, such as primary production, current-based food supply and metabolism.  相似文献   
10.
The Upper Miocene (10.7–9.0 Ma) Battye Glacier Formation was deposited 250 km inland from the modern Amery Ice Shelf edge in Prydz Bay, East Antarctica. The composition of clay minerals distinguishes a Lower Member, which reflects regional erosion of Precambrian metamorphic basement, from an Upper Member, which records increased erosion of local Permian–Triassic Amery Group strata. The Upper Member was deposited in an ice-proximal environment akin to the modern fjords of East Greenland, with substantial diamict deposition resulting from melting iceberg discharge. The Lower Member was deposited in an ice-distal environment and included the accumulation of the fossil-bearing McLeod Beds. The McLeod Beds contain much siliceous biogenic sediment (≤ 15% opal), which is rare to absent in the predominantly hemipelagic mud of modern East Greenland fjords. The McLeod Beds also contain largely monospecific in situ Hiatella sp. mollusc assemblages suggestive of environmental stress, potentially caused by low salinity melt-water and a high input of terrigenous sediment, which excluded most other benthic taxa. Geochemical results from primary aragonite in Hiatella shells imply large freshwater input into the marine environment during mollusc growth, causing low δ18O, Na, Mg and high Fe values. The present study indicates that iceberg melt-water influence entering the marine environment was greater during the Late Miocene than today around Antarctica, and documents the paleoenvironment associated with a discrete period of ice margin retreat and marine incursion into the Lambert embayment.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号