首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   3篇
测绘学   2篇
大气科学   3篇
地球物理   11篇
地质学   22篇
海洋学   10篇
天文学   16篇
自然地理   2篇
  2024年   1篇
  2020年   1篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   2篇
  2011年   4篇
  2010年   1篇
  2009年   4篇
  2008年   3篇
  2007年   4篇
  2006年   4篇
  2004年   3篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  1999年   2篇
  1998年   5篇
  1994年   2篇
  1993年   1篇
  1989年   1篇
  1986年   1篇
  1983年   1篇
  1982年   2篇
  1974年   2篇
  1973年   6篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
The northern Fossa Magna (NFM) basin is a Miocene rift system produced in the final stages of the opening of the Sea of Japan. It divides the major structure of Japan into two regions, with north-trending geological structures to the NE of the basin and EW trending structures to the west of the basin. The Itoigawa-Shizuoka Tectonic Line (ISTL) bounds the western part of the northern Fossa Magna and forms an active fault system that displays one of the largest slip rates (4–9 mm/year) in the Japanese islands. Deep seismic reflection and refraction/wide-angle reflection profiling were undertaken in 2002 across the northern part of ISTL in order to delineate structures in the crust, and the deep geometry of the active fault systems. The seismic images are interpreted based on the pattern of reflectors, the surface geology and velocities derived from refraction analysis. The 68-km-long seismic section suggests that the Miocene NFM basin was formed by an east dipping normal fault with a shallow flat segment to 6 km depth and a deeper ramp penetrating to 15 km depth. This low-angle normal fault originated as a comparatively shallow brittle/ductile detachment in a high thermal regime present in the Miocene. The NFM basin was filled by a thick (>6 km) accumulation of sediments. Shortening since the late Neogene is accommodated along NS to NE–SE trending thrust faults that previously accommodated extension and produce fault-related folds on their hanging wall. Based on our balanced geologic cross-section, the total amount of Miocene extension is ca. 42 km and the total amount of late Neogene to Quaternary shortening is ca. 23 km.  相似文献   
2.
In this study we used two stable isotopes, δ13C and δ18O, for water mass classification in the coastal region off eastern Hokkaido. δ13C* values, which were corrected for the biological effect, and δ 18O values up to 300 m depth suggested that the isotopic character of the onshore and offshore water in the southern Okhotsk Sea, the Nemuro Strait and the western North Pacific could be explained by the mixing of three source waters: the Oyashio water (OYW), Soya Warm Current water (SWCW) and East Sakhalin Current water (ESCW). In summer, δ 13C*-δ 18O plots indicated mixing between SWCW from the southern Okhotsk Sea and OYW in the Pacific coast of southeastern Hokkaido, while temperature-salinity plots of the onshore water showed minimal difference from the offshore OYW. In winter, on the other hand, the mixed water of ESCW and OYW (or SWCW) appeared in the Pacific coastal region, distributed as cold, low salinity onshore water. Finally, we estimated mixing ratios of OYW, SWCW and ESCW in the coastal region of western North Pacific using their mean values of δ 13C* and δ 18O as endmembers. These results suggest seasonal and yearly changes of water mass combination en route from the southern Okhotsk Sea to the western North Pacific.  相似文献   
3.
Spherical harmonic coefficients (SHCs) for the daily magnetic variation fields (solar and lunar) and the main field of the earth are usually estimated by the method of least squares applied to a truncated spherical harmonic series. In this paper, an integral method for computing the SHCs for the solar quiet daily magnetic variation fieldSq is described and applied toSq data for May and June 1965. TheSq SHCs thus derived are then compared with the results obtained using both unweighted and weighted versions of the least squares method. The weighting used tends to orthogonalize the least squares terms. The integral and weighted least squares results agree closely for terms up to order 4 and degree 30, but both disagree considerably for the higher degree terms with the results of the unweighted least squares. Errors introduced by the numerical integration can be shown to be small, hence the disagreement between integral and unweighted least squares coefficient sets arises from improper weighting. Also, it is concluded that discrepancies between the geomagnetic northward and eastward component-derived coefficient sets arise from either time-dependent external sources that produce non-local-time, based fields or nonpotential sources and not from truncation of the spherical harmonic series as has previously been suggested.Deceased.  相似文献   
4.
Pressure-induced amorphization of α-quartz type GeO2 was studied with a newly developed X-ray diffraction system which consists of a 4-circle goniometer and a curved position sensitive detector. Single-crystal diffraction was measured under pressurs up to 7.3 GPa at room temperature in order to investigate pretransitional phenomena. Diffraction intensity and line width of the diffraction profiles showed no remarkable change up to 5.9 GPa. However, no sharp diffraction line was observed at pressures over 6.5 GPa. The bulk modulus at 0.1 MPa and its pressure derivative of α-quartz type GeO2 were determined to be K T =32.8(3.3) GPa and K′ T =6.0(2.0), respectively. In situ microscopic observations of the amorphization transformation was also performed. The large volume change due to amorphization was observed and estimated to be about 10%.  相似文献   
5.
Palaeomagnetic results are reported from the metalliferous Stark black shale in the Upper Pennsylvanian (Missourian/Kasimovian) Kansas City Group. Palaeomagnetic analysis of 400 specimens from 28 sites gives a characteristic remanent magnetization in 17 sites of the shale that yields a Late Mississippian to Middle Pennsylvanian palaeopole at 32.2°N 128.5°E (dp = 4.7° and dm = 8.8°). The observed palaeomagnetic age is slightly older than the host rock, indicating that the mineralization of the Stark Shale has, excluding recent alteration, a primary sedimentary or syngenetic origin. The reason for the slightly older age is likely due to trace modern hematite that slightly steepens the remanence inclination. The large oval of 95 per cent confidence is interpreted to be caused by clay–magnetite aggregates that formed during sediment transport and the biasing effect of the gentle palaeocurrent at each site acting on the large aggregates. Therefore, the scattered distribution of the site mean remanence declinations found for the Stark Shale is evidence of a detrital remanent magnetization that is formed by primary sedimentary processes with an enriched metallic content and not remagnetization with mineralization by secondary hydrothermal processes.  相似文献   
6.
Abstract Melting experiments have been carried out on an olivine andesite of Mt Yakushi-Yama from the Miocene Setouchi volcanic belt in northeastern Shikoku, Japan. This andesite has been characterized by a low ratio of FeO*/Mg° (= 0.78). Phase relations have been determined within the pressure range of 2.8 to 19.3 kbar at 1000-1300°C under anhydrous and water-saturated conditions. At pressures less than 8.8 kbar, olivine is a liquidus phase. Orthopyroxene appears on the liquidus at 9.3 kbar under the anhydrous conditions. The multiple saturation point rises up to 17.5 kbar for water-saturated experiments. The andesite melt coexists with olivine and orthopyroxene just below the liquidus at 8.8–9.3 kbar and 1230°C for dry conditions, and at 17.5 kbar and 1060°C under water-saturated conditions. These experimental results indicate that the Yakushi-Yama olivine andesite magma could coexist with a harzburgitic mantle at depths between about 30 and 60 km, and at temperatures between 1060 and 1230°C. Experimental data also suggest a possibility that a high magnesian andesite magma would be generated by a direct partial melting of the uppermost harzburgitic mantle under anhydrous conditions.  相似文献   
7.
It is shown that the dependence of the variations of vertical component of the polar cap magnetic field on the sector structure (actually, the azimuthal or Y component) of the interplanetary magnetic field as first discovered by Svalgaard (1968) and Mansurov (1969) extends to variations as brief as 1 hr or even less. The relation between sector structure dependent variations and substorm fields as indicated by the southward-directed component of the interplanetary magnetic field is investigated by comparing brief variations over selected intervals of time. The independence of the variations of the polar cap vertical and horizontal components suggests that there are at least two different current systems which produce brief variations in the polar cap. One of the current systems is related to the substonn field; the other is strongly seasonally dependent and is confined to the dayside sector of the Earth.  相似文献   
8.
It is shown that a significant part, if not all, of the DP-2 variation can reasonably be explained by the combined effect of the equatorward expansion of the permanent Sqp current system and its enhancement. Both phenomena are now found to be controlled by the northsouth component of interplanetary magnetic field. Thus, it is concluded that the DP-2 variation arises from a modulation of the permanently existing Sqp current system by the interplanetary magnetic field, rather than by an intermittent growth of a particular type of current system.  相似文献   
9.
Using long-term sea surface temperature (SST) and acoustic Doppler current profiler (ADCP) data, we examined variations in the current axis of the Tsushima Warm Current (TWC) off the San’in coast of Japan, near the entrance to the Japan Sea. There were large horizontal temperature gradients along the shelf edge in the southwestern Japan Sea from October to May, suggesting that the second branch of the TWC appears not only in spring and autumn but also in winter. From the ADCP data analysis, we found that currents with speeds of approximately 20 cm s?1 and greater appeared around the shelf edge off San’in coast in all seasons. The SST and ADCP data analyses suggested that the second branch of the TWC exists around the shelf edge off the San’in coast throughout the year. This finding differed from those of previous studies. A relatively strong current (speed greater than 15 cm s?1) appeared on the shore side in all seasons, except at line W in winter. This current might be the first branch of the TWC. The first branch seemed to occur around in 100 m isobaths, but shifted northward and southward because the bottom topography around lines W and M was relatively flat and the shelf was broad. The first branch was very obscure, and it was difficult to define the two branches of the TWC off the San’in coast from the seasonally averaged vectors. However, snapshots of current distribution derived from the ADCP data clearly showed these branches. Hence, both the first and second branches might occur throughout the year off the San’in coast.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号