首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
地质学   1篇
海洋学   2篇
天文学   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
The Plio-Pleistocene wedge off mid Norway is characterized by a pronounced increase in sonic velocities versus depth. At its base, a velocity inversion of 0.55 km s−1 exists with respect to the underlying unit. We propose that the inversion may be a result of the stage margin evolution, in which both the pre-depositional physiography of the margin and the depositional history of the wedge itself have been key elements. The glaciation of the uplifted mainland and the cyclic advancement of glaciers over the shelf led to the formation of the Plio-Pleistocene prograding megasequence. Underlying sequences may have been overpressured due to the rapid deposition of the wedge and because shales at the base of the wedge, deposited in a distal deltaic environment, represented a seal for water drainage. Overpressure provides sediment instability, and is an attractive mechanism to explain intra-sequence deformation and partly lateral mass movements.  相似文献   
2.
Jakob Skogseid 《Tectonophysics》1994,240(1-4):225-247
The distribution of Cenozoic subsidence across Northeast Atlantic volcanic margins have been evaluated to define the width of the rift zone and magnitude of extensional deformation. The subsidence profiles are corrected for the effects of lower-crustal magmatic bodies emplaced during continental break-up. The dimensions of the bodies have been derived from the crustal velocity structure. The width of the Late Cretaceous-Paleocene Northeast Atlantic rift zone was more than 300 km, and the lithospheric extension factor increases gradually towards the line of continental separation. A large number of high-quality seismic reflection data tied to scientific and commercial wells reveals that the initiation of extensional deformation preceded continental separation by ˜ 18 m.y. on the Vøring margin, off Norway. These results show that the Northeast Atlantic volcanic margins, commonly considered as typical volcanic margins indeed, have similar dimensions as non-volcanic margins, and as continental rifts. Thus, these margins contrast significantly with previously suggested evolutionary models based on narrow rift zones and formation during rapid lithospheric failure. The wide rift is compatible with volume of igneous rocks observed along these margins, and with a thermal anomaly similar to that associated with production of Northeast Atlantic oceanic lithosphere.  相似文献   
3.
Two end members of passive margin types are present on the Namibia margin: volcanic and non-volcanic. The central and southern parts of the Namibia margin feature characteristic volcanic margin elements such as thickened initial oceanic crust, seaward dipping reflectors, and high-velocity/density lower crust that extends beneath the rift zone that was formed during initial seafloor spreading in Early Cretaceous. The margin north of the Walvis FZ is non-volcanic in character and probably formed as a result of a ridge jump that occurred after cessation of the initial magmatic activity. The Walvis Ridge forms the boundary between the two margin types and resulted from the persistent magmatism associated with the Tristan plume. MCS data in conjunction with gravity modeling reveal a Paleozoic rift zone beneath the Namibia margin south of the Walvis FZ. The Paleozoic rift zone partly overlaps the Jurassic/Early Cretaceous rift zone which produced the breakup between Africa and South America. We calculate an average stretching value of =1.4 for the Paleozoic rift, based on subsidence modeling. The rift is partly bounded by low-angle faults, related to the orogenic collapse of the Pan-African fold belt, which provided a major Paleozoic sediment source. The offshore continuity of onshore ophiolitic complexes is suggested by the coast parallel high-amplitude magnetic anomaly G, and low-angle detachment faults along the southern part of the margin. The average stretching value for the Jurassic/Early Cretaceous rift is =1.7, which implies a syn-rift displacement on this margin of 70 km. The minimum igneous volume of the South Atlantic LIP was found to be in excess of 3.62×106 km3.  相似文献   
4.
High-quality seismic data document a Maastrichtian-Paleocene rift episode on the Vøring margin lasting for 20 m.y. prior to continental breakup. The rift structures are well imaged in the Fenris Graben and Gjallar Ridge region in the western Vøring Basin, and are characterized by low-angle detachment faults with variable fault geometries from south to north. The structural restoration has facilitated the division of pre- and syn-rift sediments across the extensional terrain, which is subsequently used to evaluate mode and mechanism for the lithospheric deformation. Extension estimates based on the structural restoration, subsidence analysis and crustal thickness evaluations yield stretching factors ranging between 1.5 to 2.3 across the main fault zone just landward of the early Tertiary flood basalts. The structural restoration also shows that a middle crustal dome structure, observed beneath the low-angle faults, can be explained by extensional unroofing. Thus, the dome structure may represent a possible metamorphic core complex. Calculations of the effects on vertical motion, assuming uniform and two-layer differential stretching models combined with the arrival of the Iceland mantle plume during rifting, indicate that the uniform extension model may account for both observed early rift subsidence and subsequent late rift uplift and erosion. Although the differential model can not be excluded, it implies early rift uplift which is not compatible with our seismic interpretation. The direct and indirect effects of the Iceland mantle plume may have caused as much as 1.2 km of late rift uplift. Comparison of the volcanic Vøring margin and the non-volcanic West Iberian margin shows similarities in terms of structural style as well as in mode and distribution of extension.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号