首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
地质学   7篇
海洋学   2篇
  2012年   2篇
  2011年   1篇
  2010年   2篇
  2008年   1篇
  2006年   1篇
  1998年   1篇
  1990年   1篇
排序方式: 共有9条查询结果,搜索用时 15 毫秒
1
1.
The distribution of the colour index is considered in the region bounded by 8–11°N and 13°30–18°30W based on the results of measurements made on board vessels of the Marine Hydrophysical Institute of the Ukrainian SSR Academy of Sciences (MHI) in 1977–1985. Mean values and statistical characteristics are calculated for the colour index variability over one-degree squares. A map of its multi-yearly average distribution is plotted.Translated by M. M. Trufanov.  相似文献   
2.
Groundwaters from the Tithonian/Kimmeridgian, Oxfordian and Upper Dogger aquifers, within the eastern part of the Paris basin (France), were characterised using 3H, 14C and 36Cl, and noble gases tracers, to evaluate their residence times and determine their recharge period. This information is an important prerequisite to evaluating the confinement properties of the Callovo-Oxfordian clay formation sandwiched between the Oxfordian aquifer and the Dogger aquifer, currently being investigated by the French nuclear waste management agency (Andra) for radioactive waste disposal. Data presented in this paper are used to test 4 hypotheses.  相似文献   
3.
4.
Understanding catchment-scale patterns of groundwater and stream salinity are important in land- and water-salinity management. A large-scale assessment of groundwater and stream data was undertaken in the eastern Mt Lofty Ranges of South Australia using geographical information systems (GIS), regional scale hydrologic data, hydrograph separation and hydrochemical techniques. Results of the study show: (1) salts were mostly of marine origin (75%), while sulfate and bicarbonate from mineral weathering comprised most of the remainder, (2) elevated groundwater salinities and stable water isotopic compositions similar to mean rainfall indicated that plant transpiration was the primary salt accumulation mechanism, (3) key factors explaining groundwater salinity were geology and rainfall, with overall catchment salinity inversely proportional to average annual rainfall, and groundwater salinity ‘hotspots’ (EC >8 mS/cm) associated with geological formations comprising sulfidic marine siltstones and shales, (4) shallow groundwater correlated with elevated stream salinity, implying that baseflow contributed to stream salt loads, with most of the annual salt load (estimated to be 24,500 tonnes) occurring in winter when baseflow volume was highest. Salt-load analysis using stream data could be a practical, low-cost technique to rapidly target the investigation of problem areas within a catchment.  相似文献   
5.
Fine-grained fluvial residual channel infillings are likely to reflect systematic compositional changes in response to climate change, owing to changing weathering and geomorphological conditions in the upstream drainage basin. Our research focuses on the bulk sediment and clay geochemistry, laser granulometry and clay mineralogy of Late-glacial and Early Holocene River Meuse (Maas) unexposed residual channel infillings in northern Limburg (The Netherlands). We demonstrate that residual channel infillings register a systematic bulk and clay compositional change related to climate change on a 1–10 k-yr time-scale. Late-glacial and Holocene climatic amelioration stabilised the landscape and facilitated prolonged and intense chemical weathering of phyllosilicates and clay minerals due to soil formation. Clay translocation and subsequent erosion of topsoils on Palaeozoic bedrock and loess deposits increased the supply of smectite and vermiculite within River Meuse sediments. Smectite plus vermiculite contents rose from 30–40% in the Pleniglacial to 60% in the Late Allerød and to 70–80% in the Holocene. Younger Dryas cooling and landscape instability caused almost immediate return to low smectite and vermiculite contents. Following an Early Holocene rise, within about 5000 yr, a steady state supply is reached before 5 ka (Mid-Holocene). Holocene sediments therefore contain higher amounts of clay that are richer in high-Al, low-K and low-Mg vermiculites and smectites compared with Late (Pleni-)glacial sediments. The importance of clay mineral provenance and loess admixture in the River Meuse fluvial sediments is discussed. © 1998 John Wiley & Sons, Ltd.  相似文献   
6.
Arsenic release from aquifers can be a major issue for aquifer storage and recovery (ASR) schemes and understanding the processes that release and attenuate As during ASR is the first step towards managing this issue. This study utilised the first and fourth cycles of a full scale field trial to examine the fate of As within the injectant plume during all stages of the ASR cycle, and the resultant water quality. The average recovered As concentration was greater than the source concentration; by 0.19 μmol/L (14 μg As/L) in cycle 1 and by 0.34 μmol/L (25 μg As/L) in cycle 4, indicating that As was being released from the aquifer sediments during ASR and the extent of As mobilisation did not decline with subsequent cycles. In the injection phase, As mobilisation due to oxidation of reduced minerals was limited to an oxic zone in close proximity to the ASR well, while desorption from Fe oxyhydroxide or oxide surfaces by injected P occurred further in the near well zone (0–4 m from the ASR well). With further aquifer passage during injection and greater availability of sorption sites there was evidence of attenuation via adsorption to Fe oxyhydroxides which reduced concentrations on the outer fringes of the injectant plume. During the period of aquifer storage, microbial activity resulting from the injection of organic matter resulted in increased As mobility due to reductive Fe oxyhydroxide dissolution and the subsequent loss of sorption sites and partial reduction of As(V) to the more mobile As(III). A reduced zone directly around the ASR well produced the greatest As concentration and illustrated the importance of Fe oxyhydroxides for controlling As concentrations. Given the small spatial extent of this zone, this process had little effect on the overall recovered water quality.  相似文献   
7.
The input of groundwater-borne nutrients to Adelaide's (South Australia) coastal zone is not well known but could contribute to the ongoing decline of seagrass in the area. As a component of the Adelaide Coastal Waters Study (ACWS), the potential for using the radium quartet (223Ra, 224Ra, 226Ra and 228Ra) and 222Rn to evaluate submarine groundwater discharge (SGD) was evaluated. Potential isotopic signatures for SGD were assessed by sampling groundwater from three regional aquifers potentially contributing SGD to the ACWS area. In addition, intertidal groundwater was sampled at two sand beach sites. In general, the regional groundwaters were enriched in long-lived Ra isotopes (226Ra and 228Ra) and in 222Rn relative to intertidal groundwater. Radium activity (but not 222Rn activity) was positively correlated to salinity in groundwater from one of the regional aquifers and in intertidal groundwater. Radium isotope ratios (223Ra/226Ra, 224Ra/226Ra and 228Ra/226Ra) were less variable than individual Ra isotope activities within potential SGD sources. Recirculated seawater (estimated from the intertidal groundwater samples with seawater-like salinities) also had distinctly higher Ra isotope ratios than the regional groundwaters. The activities for all radioisotopes were relatively low in seawater. The activity of the short-lived 223Ra and 224Ra were highest at the shoreline and declined exponentially with distance offshore. In contrast, 228Ra and 226Ra activities had a weak linear declining trend with distance offshore. Rn-222 activity was at or near background in all seawater samples. The pattern of enrichment in short-lived Ra isotopes and the lack of 222Rn in seawater suggest that seawater recirculation is the main contributor to SGD in the ACWS area. Preliminary modeling of the offshore flux of 228Ra and 226Ra suggest that the SGD flux to the ACWS area ranges between 0.2 and 3 · 10− 3 m3 (m of shoreline)− 1 s− 1.  相似文献   
8.
9.
Following the explosion of reactor 4 at the Chernobyl power plant in northern Ukraine in 1986, contaminated soil and vegetation were buried in shallow trenches dug directly on-site in an Aeolian sand deposit. These trenches are sources of radionuclide (RN) pollution. The objective of the present study is to provide constraints for the Chernobyl flow and RN transport models by characterising groundwater residence time. A radiochronometer 3H/3He method (t1/2 = 12.3 a) and anthropogenic tracers including CFC and SF6 are investigated along with the water mass natural tracers Na, Cl, 18O and 2H.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号