首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
海洋学   5篇
  2008年   2篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
Geomorphic, stratigraphic, and faunal observations of submarine slide scars that occur along the flanks of Monterey Canyon in 2.0–2.5 km water depths were made to identify the processes that continue to alter the surface of a submarine landslide scar after the initial slope failure. Deep-sea chemosynthetic biological communities and small caves are common on the sediment-free surfaces of the slide scars, especially along the headwall. The chemosynthetic organisms observed on slide scars in Monterey Canyon undergo a faunal succession based in part on their ability to maintain their access to the redox boundaries in the sediment on which they depend on as an energy source. By burrowing into the seafloor, these organisms are able to follow the retreating redox boundaries as geochemical re-equilibration occurs on the sole of the slide. As these organisms dig into the seafloor on the footwall, they often generate small caves and weaken the remaining seafloor. While chemosynthetic biological communities are typically used as indicators of fluid flow, these communities may be supported by methane and hydrogen sulfide that are diffusing out of the fresh seafloor exposed at the sole of the slide by the slope failure event. If so, these chemosynthetic biological communities may simply mark sites of recent seafloor exhumation, and are not reliable fluid seepage indicators.  相似文献   
2.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   
3.
A sediment gravity flow descended through the axis of Monterey Canyon on 20 December 2001 at 13:35 Pacific standard time. The timing of this event is documented by a current-meter package which recorded an 11.9-dbar pressure increase in less than 10 min and was found 550 m down-canyon from its deployment site, buried completely within a >70-cm-thick gravity flow deposit. This event is believed to have started in less than 290 m of water because an instrument at this location was also lost at the same time. A 178-cm core collected after the event from the axis of the canyon at 1,297-m water depth contained fresh, greenish, chlorophyll-rich organic material at 32-cm sub-bottom depth, suggesting the event extended to this water depth. The only trigger identified for this mass movement event appears to be moderate sea and surf conditions. Thus, gravity flow events of this magnitude do not require an exceptional triggering event.  相似文献   
4.
Seafloor blister-like mounds, methane migration and gas hydrate formation were investigated through detailed seafloor surveys in Santa Monica Basin, offshore of Los Angeles, California. Two distinct deep-water (≥ 800 m water depth) topographic mounds were surveyed using an autonomous underwater vehicle (carrying a multibeam sonar and a chirp sub-bottom profiler) and one of these was explored with the remotely operated vehicle Tiburon. The mounds are > 10 m high and > 100 m wide dome-shaped bathymetric features. These mounds protrude from crests of broad anticlines (~ 20 m high and 1 to 3 km long) formed within latest Quaternary-aged seafloor sediment associated with compression between lateral offsets in regional faults. No allochthonous sediments were observed on the mounds, except slumped material off the steep slopes of the mounds. Continuous streams of methane gas bubbles emanate from the crest of the northeastern mound, and extensive methane-derived authigenic carbonate pavements and chemosynthetic communities mantle the mound surface. The large local vertical displacements needed to produce these mounds suggests a corresponding net mass accumulation has occurred within the immediate subsurface. Formation and accumulation of pure gas hydrate lenses in the subsurface is proposed as a mechanism to blister the seafloor and form these mounds.  相似文献   
5.
Seafloor pockmarks and subsurface chimney structures are common on the Norwegian continental margin north of the Storegga Slide scar. Such features are generally inferred to be associated with fluid expulsion, and imply overpressures in the subsurface. Six long gravity and piston cores taken from the interior of three pockmarks were compared with four other cores taken from the same area but outside the pockmarks, in order to elucidate the origins and stratigraphy of these features and their possible association with the Storegga Slide event. Sulfate gradients in cores from within pockmarks are less steep than those in cores from outside the pockmarks, which indicates that the flux of methane to the seafloor is presently smaller within the pockmarks than in the adjacent undisturbed sediments. This suggests that these subsurface chimneys are not fluid flow conduits lined with gas hydrate. Methane-derived authigenic carbonates and Bathymodiolus shells obtained from a pockmark at >6.3 m below the seafloor indicate that methane was previously available to support a chemosynthetic community within the pockmark. AMS 14C measurements of planktonic Foraminifera overlying and interlayered with the shell-bearing sediment indicate that methane was present on the seafloor within the pockmark prior to 14 ka 14C years b.p., i.e., well before the last major Storegga Slide event (7.2 ka 14C years b.p., or 8.2 ka calendar years b.p.). These observations provide evidence that overpressured fluids existed within the continental margin sediments off Norway during the last major advance of Pleistocene glaciation.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号