首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
地球物理   5篇
地质学   5篇
海洋学   5篇
  2015年   1篇
  2013年   1篇
  2011年   2篇
  2010年   2篇
  2009年   4篇
  2007年   4篇
  2006年   1篇
排序方式: 共有15条查询结果,搜索用时 312 毫秒
1.
Egg production of Calanus finmarchicus was studied during joint basin-scale surveys in April–June 2003 in the Norwegian Sea. Surveys covered the whole Norwegian Sea and were conducted from Norwegian, Icelandic and Faroese research vessels. Stations were classified as being in pre-bloom, bloom or post-bloom phase according to levels of chlorophyll a and nitrate. Individual egg production rates and population egg production rates were calculated and compared between areas. Both individual egg production rates (eggs female−1 day−1) and population egg production rates (eggs m−2 day−1) were significantly higher in bloom areas compared with pre-bloom and post-bloom areas. However, when integrated over an estimated duration of the three phases, the time-integrated egg production (eggs m−2) in most years was highest in the pre-bloom phase, and this was explained by the longer duration of this phase compared with the two other phases.  相似文献   
2.
The aim of the research was to investigate the diet of herring at different stages of its life cycle. For that purpose feeding of 0-group and immature herring in the Barents Sea, as well as of mature fish from the Norwegian Sea, was studied. 0-Group herring was sampled in the Barents Sea in August–September 2002–2005 during the international 0-group and trawl-acoustic survey of pelagic fish, as well as during the trawl-acoustic survey of demersal fish in November–December 2003–2004. Stomach samples of immature herring (1–3 years) were collected in late May and early of June 2001 and 2005 in the south-western part of the Barents Sea during the trawl-acoustic survey for young herring. Stomach samples of mature herring were collected in the Norwegian Sea in 1996, 1998, 1999, 2001, and 2002 in the course of the international trawl-acoustic survey of pelagic fish. Feeding intensity of herring of all age groups varied considerably between years and this was probably associated with availability and accessibility of their prey. The 0-group herring was found to have the most diverse diet, including 31 different taxa. In August–September, copepods, euphausiids, Cladocera, and larvae Bivalvia were most frequent in the diet of 0-group herring, but euphausiids and Calanus finmarchicus were the main prey taken. In November–December, euphausiids and tunicates were major prey groups. It was found that C. finmarchicus in the diet of 0-group herring was replaced by larval and adult euphausiids with increasing fish length. C. finmarchicus was the principal prey of immature herring and dominated in the diet of both small and large individuals and mainly older copepodites of C. finmarchicus were taken. Larval and adult euphausiids were found in stomachs of immature herring as well, but their share was not large. The importance of different prey for mature herring in the Norwegian Sea varied depending on the feeding area and length of the herring. On the whole C. finmarchicus and 0-group fish were the most important prey for mature herring diet, but fish prey were only important in a small sampling area. Hyperiids, euphausiids, tunicates, and pteropods were less important prey, and in 2002 herring actively consumed herring fry and redfish larvae.  相似文献   
3.
4.
5.
The purpose of the study is to analyze the state of the Barents Sea euphausiids populations in the warm period (2000–2005) based on the study of their structure dynamics and distribution under the influence of abiotic and biotic factors. For estimation of their aggregations in the bottom layer, the traditional method was used with the help of the modified egg net (0.2 m2 opening area, 564 μm mesh size). The net is used for collecting euphausiids in the autumn–winter period when their activity is reduced, which results in high-catch efficiency. The findings confirmed the major formation patterns of the euphausiids species composition associated with climate change in the Arctic basin. As before, in the warm years, one can see a clear-cut differentiation of space distribution of the dominant euphausiids Thysanoessa genus with localization of the more thermophilic Thysanoessa inermis in the north-west Barents Sea and Thysanoessa raschii in the east. The major euphausiids aggregations are formed of these species. In 2004, the first data of euphausiids distribution in the northern Barents Sea (77–79°N) were obtained, and demonstrated extremely high concentrations of T. inermis in this area, with the biomass as high as 1.7–2.4 g m−2 in terms of dry weight. These data have improved our knowledge of the distribution and euphausiids abundance during periods of elevated sea-water temperatures in the Barents Sea. The oceanic Atlantic species were found to increase in abundance due to elevated advection to the Barents Sea during the study period. Thus, after nearly a 30-year-long absence of the moderate subtropical Nematoscelis megalops in the Barents Sea, they were found again in 2003–2005. However in comparison with 1960, the north-east border of its distribution considerably shifted to 73°50′N 50°22′E. The portion of Meganyctiphanes norvegica also varied considerably—from 10% to 20% of the total euphausiids population in the warm 1950s–1960s almost to complete disappearing in 1970–1990s. The peak of this species’ occurrence (18–26%) took place in the beginning of warm period (1999–2000) after a succession of cold years. The subsequent reduction of the relative abundance of M. norvegica to 7% might have been mostly caused by fish predation during a period of low population densities of capelin. This high predation pressure may therefore have been mediated both by other pelagic fishes (i.e. herring, blue whiting, polar cod) but also by demersal fishes such as cod and haddock. Similar sharp fluctuations in the capelin stock (the major consumer of euphausiids) created marked perturbations in the food web in the Barents Sea in the middle 1980s and the early 1990s.  相似文献   
6.
The paper addresses the technique and the first results of a unique experiment on the deep tensor frequency electromagnetic sounding, the Fennoscandian Electrical conductivity from results of sounding with Natural and Controlled Sources (FENICS). In the experiment, Energy-1 and Energy-2 generators with power of up to 200 kW and two mutually orthogonal industrial 109- and 120-km-long power transmission lines were used. The sounding frequency range was 0.1–200 Hz. The signals were measured in the Kola-Karelian region, in Finland, on Svalbard, and in Ukraine at distances up to 2150 km from the source. The parameters of electric conductivity in the lithosphere are studied down to depths on the order of 50–70 km. A strong lateral homogeneity (the one-dimensionality) of a geoelectric section of the Earth’s crust is revealed below depths of 10–15 km. At the same time, a region with reduced transverse crustal resistivity spread over about 80 000 square kilometers is identified within the depth interval from 20 to 40 km. On the southeast the contour of the anomaly borders the zone of deepening of the Moho boundary down to 60 km in Central Finland. The results are compared with the AMT-MT sounding data and a geodynamic interpretation of the obtained information is carried out.  相似文献   
7.
The high-voltage rectifier is described developed for the Energy-2 generator, with a capacity of 200 kW in which a step-up power transformer is used as a converter. The Energy-2 generator is intended for solving problems of precision deep electromagnetic monitoring of seismoactive regions of the Earth’s crust to find earthquake precursors. Theoretical investigation and numerical simulation of the high-voltage rectifier are carried out and parameters of its elemental base are optimized. All the high-voltage rectifier components, heat sink, and forced cooling system were manufactured on the basis of the developed documentation. The high-voltage rectifier was successfully tested as part of the“Energy-2 generator in August 2009 during the “FENIKS-2009” experiment.  相似文献   
8.
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号