首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15篇
  免费   0篇
  国内免费   2篇
地球物理   3篇
地质学   10篇
海洋学   3篇
天文学   1篇
  2018年   2篇
  2012年   1篇
  2011年   3篇
  2009年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   2篇
  2001年   1篇
  1995年   1篇
  1990年   1篇
  1984年   1篇
  1982年   1篇
排序方式: 共有17条查询结果,搜索用时 31 毫秒
1.
The production rate and isotopic composition of H2 derived from radiolytic reactions in H2O were measured to assess the importance of radiolytic H2 in subsurface environments and to determine whether its isotopic signature can be used as a diagnostic tool. Saline and pure, aerobic and anaerobic water samples with pH values of 4, 7, and 10 were irradiated in sealed vials at room temperature with an artificial γ source, and the H2 abundance in the headspace and its isotopic composition were measured. The H2 concentrations were observed to increase linearly with dosage at a rate of 0.40 ± 0.04 molecules (100 eV)−1 within the dosage range of 900 to 3500 Gray (Gy; Gy = 1 J Kg−1) with no indication of a maximum limit on H2 concentration. At ∼2000 Gy, the H2 concentration varied only by 16% across the experimental range of pH, salinity, and O2. Based upon this measured yield and H2 yields for α and β particles, a radiolytic H2 production rate of 10−9 to 10−4 nM s−1 was estimated for the range of radioactive element concentrations and porosities typical of crustal rocks. The δD of H2 was independent of the dosage, pH (except for pH 4), salinity, and O2 and yielded an αDH2O-H2 of 2.05 ± 0.07 (αDH2O-H2 = (D/H)H2O to (D/H)H2), slightly less than predicted radiolytic models. Although this radiolytic fractionation value is significantly heavier than that of equilibrium isotopic exchange between H2 and H2O, the isotopic exchange rate between H2 and H2O will erase the heavy δD of radiolytic H2 if the age of the groundwater is greater than ∼103 to 104 yr. The millimolar concentrations of H2 observed in the groundwater of several Precambrian Shields are consistent with radiolysis of water that has resided in the subsurface for a few million years. These concentrations are well above those required to support H2-utilizing microorganisms and to inhibit H2-producing, fermentative microorganisms.  相似文献   
2.
3.
4.
Concentrations and isotopic ratios of dissolved noble gases, 36Cl, δD and δ18O in water samples from the ultra-deep gold mines (0.718 to 3.3 km below the surface) in the Witwatersrand Basin, South Africa, were investigated to quantify the dynamics of these ultra deep crustal fluids. The mining activity has a significant impact on the concentrations of dissolved gases, as the associated pressure release causes the degassing of the fissure water. The observed under saturation of the atmospheric noble gases in the fissure water samples (70-98%, normalized to ASW at 20°C and 1013 mbar) is reproduced by a model that considers diffusive degassing and solubility equilibration with a gas phase at sampling temperature. Corrections for degassing result in 4He concentrations as high as 1.55 · 10−1cm3STP4He g−1, 40Ar/36Ar ranging between 806 and 10331, and 134Xe/132Xe and 136Xe/132Xe ratios above 0.46 and 0.44, respectively. Corrected 134(136)Xe/132Xe and 134(136)Xe/4He-ratios are consistent with their production ratios, whereas the nucleogenic 4He/40Ar, and 134(136)Xe/40Ar ratios generally indicate that these gases are produced in an environment with an average [U + Th]/K-content 2-3 times above that of crustal average. In two scenarios, one considering only accumulation of in situ produced noble gases, the other additionally crustal flux components, the model ages for 14 individual water samples range from 13 to 168 Ma and from 1 to 23 Ma, respectively.The low 36Cl-ratios of (4-37) · 10−15 and comparatively high 36Cl-concentrations of (8-350) · 10−15 atoms 36Cl l−1 reflect subsurface production in secular equilibrium indicating an age in excess of 1.5 Ma or 5 times the half-life of 36Cl.In combination, the results suggest residence times of the fluids in fissures in this region (up to 3.3 km depth) are of the order of 1-100 Ma. We cannot exclude the possibility of mixing and that small quantities of younger water have been mixed with the very old bulk.  相似文献   
5.
6.
The former Homestake mine in South Dakota (USA) cuts fractured metamorphic rock over a region several km2 in plan, and plunges to the SE to a depth of 2.4 km. Numerical simulations of the development and dewatering of the mine workings are based on idealizing the mine-workings system as two overlapping continua, one representing the open drifts and the other representing the host rock with hydrologic properties that vary with effective stress. Equating macroscopic hydrologic properties with characteristics of deformable fractures allows the number of parameters to be reduced, and it provides a physically based justification for changes in properties with depth. The simulations explain important observations, including the co-existence of shallow and deep flow systems, the total dewatering flow rate, the spatial distribution of in-flow, and the magnitude of porosity in the mine workings. The analysis indicates that a deep flow system induced by ~125 years of mining is contained within a surface-truncated ellipsoid roughly 8 km by 4 km in plan view and 5.5 km deep with its long-axis aligned to the strike of the workings. Groundwater flow into the southern side of the workings is characterized by short travel times from the ground surface, whereas flow into the northern side and at depth consists of old water removed from storage.  相似文献   
7.
Little is known about hydrogeochemical conditions beneath thick permafrost, particularly in fractured crystalline rock, due to difficulty in accessing this environment. The purpose of this investigation was to develop methods to obtain physical, chemical, and microbial information about the subpermafrost environment from a surface‐drilled borehole. Using a U‐tube, gas and water samples were collected, along with temperature, pressure, and hydraulic conductivity measurements, 420 m below ground surface, within a 535 m long, angled borehole at High Lake, Nunavut, Canada, in an area with 460‐m‐thick permafrost. Piezometric head was well above the base of the permafrost, near land surface. Initial water samples were contaminated with drill fluid, with later samples <40% drill fluid. The salinity of the non‐drill fluid component was <20,000 mg/L, had a Ca/Na ratio above 1, with δ18O values ~5‰ lower than the local surface water. The fluid isotopic composition was affected by the permafrost‐formation process. Nonbacteriogenic CH4 was present and the sample location was within methane hydrate stability field. Sampling lines froze before uncontaminated samples from the subpermafrost environment could be obtained, yet the available time to obtain water samples was extended compared to previous studies. Temperature measurements collected from a distributed temperature sensor indicated that this issue can be overcome easily in the future. The lack of methanogenic CH4 is consistent with the high sulfate concentrations observed in cores. The combined surface‐drilled borehole/U‐tube approach can provide a large amount of physical, chemical, and microbial data from the subpermafrost environment with few, controllable, sources of contamination.  相似文献   
8.
The effect of a snow cover on sea ice upon radar backscatter at microwave frequencies (X- andKu-baud) can be important. The effect of scattering from the snow cover on thesigmadegof first-year ice is shown to be severe (5 cm of dry snow can raisesigmadegby 8 dB at 9 GHz), while that onsigmadegof multiyear ice is shown to be smaller. The low thermal conductivity of snow compared to that of sea ice effectively raises the temperature of the upper surface of the ice, resulting in higher dielectric constants for the ice, thereby modifying the backscatter both from the ice surface and from the scattering volume. The temperature effect of a 10-cm snow cover on 3-m-thick multiyear ice is to lower thesigmadegby only about 0.3 dB for air temperature of-20degC. The effect on 1-m-thick first-year ice is even less. Hence, the volume-scattering effect of snow is more important than the temperature effect. The presence of a wet snow cover can block the volume-scattering contribution of the multiyear ice. The effect of wet snow cover on first-year ice should be smaller than that Of dry, snow, becausesigmadegof wet snow is lower than that of dry snow.  相似文献   
9.
The ability to use radar to discriminate Arctic Sea ice types has been investigated using surface-based and helicopter-borne scatterometer systems. The surface-based FM/CW radar operated at 1.5 GHz and at multiple frequencies in the 8-18-GHz region. Measurements were made at angles of10degto70degfrom nadir. The helicopter-based radar operated at the 8-18-GHz frequencies with incidence angles of0degto60deg. Extensive surface-truth measurements were made at or near the time of backscattar measurement to describe the physical and electrical properties of the polar scene. Measurements in the 8-18-GHz region verify the ability to discriminate multiyear, thick first-year, thin first-year, and pressure-ridged sea ice and lake ice. The lowest frequency, 9 GHz, was found to provide the greatest contrast between these ice categories, with significant levels of separation existing between angles from15degto70deg. The radar cross sections for like antenna polarizations, VV and HH, were very similar in absolute level and angular response. Cross-polarization, VH and HV, provided the greatest contrast between ice types, The 1.5-GHz measurements showed that thick first-year, thin first-year, and multiyear sea ice cannot be distinguished at10degto60degincidence angles with like polarization, VV, by backscatter alone; but that undeformed sea ice can be discriminated from pressure-ridged ice and lake ice. The effect of snow cover on the backscatter from thick first-year ice was also investigated. It contributes on the order of 0 to 4 dB, depending on frequency and incidence angle; the contribution of the snow layer increased with increasing frequency. Snow cover on smooth lake ice was found to be a major backscatter mechanism. Summer measurements demonstrate the inability to extend the knowledge of the backscatter from sea ice under spring conditions to all seasons.  相似文献   
10.
Characterization of lattice strain induced by neutron irradiation   总被引:1,自引:0,他引:1  
Powder X-ray diffraction and Rietveld refinement have been used to study structural damage induced by neutron irradiation of orthoclase (Or94) from Benson Mines, New York. X-ray diffraction profiles of samples exposed to total neutron doses in excess of 6.3×1018 n/ cm2 exhibit small but measurable peak broadening in comparison with unirradiated orthoclase. Rietveld structure refinements and transmission electron microscope observations indicate that the X-ray peak broadening arises primarily from the effect of strain rather than particle size. The results reveal a positive correlation between the neutron dose and the anisotropic strain percentage calculated from the Lorentzian profile parameters. This strain-induced broadening probably stems from numerous point defects created by recoiling atoms during neutron collisions. These observations have important implications for the diffusive behavior of 39Ar and 40Ar.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号