首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   22篇
  免费   4篇
大气科学   1篇
地球物理   2篇
地质学   14篇
海洋学   5篇
自然地理   4篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   2篇
  2015年   2篇
  2014年   1篇
  2013年   1篇
  2012年   1篇
  2011年   2篇
  2010年   2篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2000年   1篇
  1995年   1篇
排序方式: 共有26条查询结果,搜索用时 15 毫秒
1.
Palaeo-bottom current strength of the West Spitsbergen Current (WSC) and the influence of the Svalbard-Barents Sea Ice Sheet (SBIS) on the depositional environment along the northern Svalbard margins are poorly known. Two gravity cores from the southern Yermak Plateau and the upper slope north of Nordaustlandet, covering marine isotope stage (MIS) 1 to MIS 5, are investigated. Five lithofacies, based on grain size distribution, silt/clay ratio, content and mean of sortable silt (SS), are distinguished to characterise the contourite-dominated sedimentary environments. In addition, depositional environments are described using total organic carbon (TOC), total sulphur (TS) and calcium carbonate (CaCO3) contents of sediments. Facies A, containing coarse SS, suggests strong bottom current activity and good bottom water ventilation conditions as inferred from low TOC content. This facies was deposited during the glacial periods MIS 4, MIS 2 and during the late Holocene. Facies B is dominated by fine SS indicating weak bottom current and poor ventilation (cf. high TOC content of 1.2–1.6%), and correlates with the MIS 4/3 and MIS 2/1 transition periods. With an equal amount of clay and sand, fine SS and high content of TOC, facies C indicates reduced bottom current strength for intervals with sediment supply from proximal sources such as icebergs, sea ice or meltwater discharge. This facies was deposited during the last glacial maximum. Facies D represents mass-flow deposits on the northern Svalbard margin attributed to the SBIS advance at or near the shelf edge. Facies E sediments indicating moderate bottom current strength were deposited during MIS 5 and MIS 3, and during parts of MIS 2. This first late Quaternary proxy record of the WSC flow and sedimentation history from the northern Svalbard margin suggests that the oceanographic conditions and ice sheet processes have exerted first-order control on sediment properties.  相似文献   
2.
The effect of seeping of methane on marine sediment records has been studied in four gravity cores from Vestnesa Ridge, Svalbard margin. The area shows acoustic signs in the form of flares indicating active methane gas seepage. For a better understanding of the timing and variability of the flux of methane in the past and the effects on potential proxies, a detailed study of the diagenetic processes that may affect the composition and structure of both sediments and foraminiferal shells is needed. Here we discuss deep‐sea records from methane‐influenced environments in three cores from an active and very heterogeneous seep‐area (pockmark) and one core from outside the pockmark for background. The results include the distribution and stable isotopes of authigenic carbonates and of benthic and planktonic foraminifera, magnetic susceptibility, AMS‐14C dates, sedimentary data and biostratigraphy. Extremely low δ13C values recorded in both benthic and planktonic foraminifera during the Bølling‐Allerød interstadials indicate possible increased methane flux beginning at late Heinrich event H1. The recorded low values are mainly a result of diagenetic overprint by methane‐derived authigenic carbonates. The δ18O signals of authigenic carbonates are close to those of foraminiferal calcite and thus the δ18O records remain a valid stratigraphical tool in methane seep sites, except in the case of severely encrusted samples. In addition, the records from the active pockmark show nearly constant values of low magnetic susceptibility in contrast to higher and more variable magnetic susceptibility values from the control station and other published records from normal sediments west of Svalbard. This phenomenon is probably caused by dissolution of magnetic minerals in the reducing environmental conditions of methane seep sediments, associated with anaerobic oxidation of methane and formation of paramagnetic minerals (pyrite). This process enables magnetic susceptibility to be used as a common diagnostic tool for identifying methane‐related palaeo‐reductive environments.  相似文献   
3.
Abstract Slab detachment is a geophysical instability whose manifestation can be revealed by seismic tomography. Evidence of this phenomenon is in the Dinarides/Hellenic and the New Hebrides subduction zones. Subducted slabs in these regions are torn horizontally at depths ranging from 100 to 300 km. We constructed a viscoelastic three-dimensional finite element model and investigated the state of stress. We found that an area with high stress concentration of the order of several hundred MPa is formed near the tip of the tear inside the slab, which can cause lateral migration of the tear. Favorable conditions for slab detachment are characterized by large interplate frictional force at a subduction zone and small slab resistance force deeper down. Stress concentration increases with the down-dip tension inside the slab. The phenomenon of slab weakening has also been studied from a thermal-mechanical standpoint, using a two-dimensional convection model with non-Newtonian, temperature-dependent rheology. The stress-dependent rheology plays an important role in causing local weakening of the descending slab. In strongly time-dependent situations the fast descending slab is not strong everywhere but has a weak region in the middle, making it vulnerable to slab detachment. The presence of viscous heating will enhance slab detachment tendency by further weakening the interior by the frictional heating. Besides these effects, there are other mechanisms which can also weaken the slab interior and help to make slabs more pliable and susceptible to detachment.  相似文献   
4.
Two cores from the southwestern shelf and slope of Storfjorden, Svalbard, taken at 389 m and 1485 m water depth have been analyzed for benthic and planktic foraminifera, oxygen isotopes, and ice-rafted debris. The results show that over the last 20,000 yr, Atlantic water has been continuously present on the southwestern Svalbard shelf. However, from 15,000 to 10,000 14C yr BP, comprising the Heinrich event H1 interval, the Bølling-Allerød interstades and the Younger Dryas stade, it flowed as a subsurface water mass below a layer of polar surface water. In the benthic environment, the shift to interglacial conditions occurred at 10,000 14C yr BP. Due to the presence of a thin upper layer of polar water, surface conditions remained cold until ca. 9000 14C yr BP, when the warm Atlantic water finally appeared at the surface. Neither extensive sea ice cover nor large inputs of meltwater stopped the inflow of Atlantic water. Its warm core was merely submerged below the cold polar surface water.  相似文献   
5.
The inflow of Atlantic Water to the Nordic seas from mid–late Younger Dryas to earliest Holocene (12 450–10 000 a BP) is reconstructed on the basis of a high‐resolution core (LINK14) from 346 m water depth on the east Faroe shelf. We have analysed the distribution of planktic and benthic foraminifera, stable isotopes and ice‐rafted debris (IRD), and calculated absolute temperatures and salinities by transfer functions. During the investigated time period there was almost continuous inflow of Atlantic Water to the Nordic seas. Deposition of IRD during the mid–late Younger Dryas and Pre‐Boreal coolings indicates the presence of melting icebergs and that summer sea surface temperatures were low. The east–west temperature gradient across the Faroe–Shetland Channel was much steeper than today. The cold conditions around the Faroe Islands are attributed to stronger East Greenland and East Icelandic currents than at present. The near‐continuous inflow of Atlantic Water is consistent with published evidence suggesting that deep convection took place in the Nordic seas, although the convection sites probably had shifted to a more easterly position than at present. Around the time of deposition of the Saksunarvatn Tephra c. 10 350 a BP, sea surface temperatures increased to the present level. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   
6.
The east Greenland margin has been influenced by oceanographic and cryospheric processes since the late Miocene, when the southwards flow of the East Greenland Current (EGC) initiated and ice sheets first advanced across the margin. However, the relative importance of these processes, and their influence on the sedimentation of the margin through time remains poorly understood. High‐resolution single‐channel seismic, chirp sub‐bottom profiles and swath bathymetry data were acquired along the middle/lower slope and proximal basinal area off Liverpool Land, central‐east Greenland margin. In this study, seismic‐stratigraphical and morphological analyses allowed us to distinguish between the major sedimentary processes that influenced this margin during the Quaternary. The stratigraphical architecture reveals mass transport deposits (MTDs) related to glacially influenced down‐slope sedimentation. These are intercalated with buried contourite systems associated with bottom‐current controlled along‐slope sedimentation. The distribution of the MTDs suggests the influence of two distinct ice‐stream systems. Initial phases of down‐slope deposition during the early‐middle Quaternary appears to be related to distal deposition fed by an ice stream from the Scoresby Sund area in the south. Shallow sedimentary processes, together with morphological analysis of the sea floor, show that the most recent activity of down‐slope processes during the latest Quaternary has occurred in the north, linked to an ice stream from the Kong Oscar Fjord area. These observations document a temporal shift in the relative dominance of the Scoresby Sund and Kong Oscar Fjord ice‐stream systems. The glacial influence on the margin has been interrupted by periods of stronger activity of along‐slope bottom‐current flow, demonstrating that the EGC periodically controlled sedimentation on the continental margin.  相似文献   
7.
The origin of two acoustic sediment units has been studied based on lithological facies, chronology and benthic stable isotope values as well as on foraminifera and clay mineral assemblages in six marine sediment cores from Kveithola, a small trough west of Spitsbergenbanken on the western Barents Sea margin. We have identified four time slices with characteristic sedimentary environments. Before c. 14.2 cal. ka, rhythmically laminated muds indicate extensive sea ice cover in the area. From c. 13.9 to 14.2 cal. ka, muds rich in ice‐rafted debris were deposited during the disintegration of grounded ice on Spitsbergenbanken. From c. 10.3 to 13.1 cal. ka, sediments with heterogeneous lithologies suggest a shifting influence of suspension settling and iceberg rafting, probably derived from a decaying Barents Sea Ice Sheet in the inner‐fjord and land areas to the north of Kveithola. Holocene deposition was episodic and characterized by the deposition of calcareous sands and shell debris, indicative of strong bottom currents. We speculate that a marked erosional boundary at c. 8.2 cal. ka may have been caused by the Storegga tsunami. Whilst deposition was sparse during the Holocene, Kveithola acted as a sediment trap during the preceding deglaciation. Investigation of the deglacial sediments provides unprecedented details on the dynamics and timing of glacial retreat from Spitsbergenbanken.  相似文献   
8.
The design of very high resolution (VHR) 3D marine surveys not only depends on the theoretical considerations of seismic imaging, but is also dictated by the field conditions and the available budget. The main geophysical controlling factors include the depth and dip of the target, and horizontal and vertical resolution. Working in shallow water environments and at high frequencies will imply constraints on sampling, array directivity and positioning accuracy. In this paper we describe the main requirements and constraints involved in VHR 3D acquisition. The second part of the paper focuses on the flexible acquisition system “Opus3D” recently developed for shallow water investigations. The system provides improvements in imaging resolution in a relatively simple and cost-effective way. Acquisition and positioning constraints limit the system to nearshore studies. The experience gained from various surveys with this new acquisition system allow us to formulate a number of practical specifications and guidelines for 3D survey design in shallow water.  相似文献   
9.
Brines can have a profound influence on the relative abundance of calcareous and agglutinated foraminiferal faunas. Here we investigated the distribution of benthic foraminiferal species in four cores from a brine‐enriched environment in Storfjorden, Svalbard. Stratigraphically, the cores comprise the last 15 000 years. The purpose of the study was to reconstruct changes in the palaeoecology and palaeoceanography of Storfjorden in relation to past climate changes, and to identify potential indicator species for brine‐affected environments. The benthic foraminifera in Storfjorden all have widespread occurrences in the Arctic realm. Calcareous species dominated Storfjorden during the deglaciation and early Holocene until c. 8200 a BP. However, agglutinated species increased in abundance whenever conditions became colder with more sea ice and stronger brine formation, such as during the Older Dryas, the Intra‐Allerød Cold Period and the Younger Dryas. Following a moderately cold period with numerous agglutinated foraminifera from c. 8200–4000 a BP, conditions became more changeable from c. 4000 a BP with repeated shifts between warmer periods dominated by calcareous species and colder periods dominated by agglutinated species. The warmer periods show a stronger influence of Atlantic Water, with reduced brine formation and less corrosive conditions at the sea bottom. Conversely, the colder periods show a stronger influence of Arctic water, with higher brine production and more corrosive bottom water. The distribution patterns of the calcareous species are basically the same whether calculated relative to the total fauna (including agglutinated specimens) or relative to calcareous specimens alone. Moreover, the patterns are similar to the patterns found elsewhere along western Svalbard in areas without the influence of brines. No particular species appear to be specifically linked to brine formation. However, the most persistent agglutinated species R. scorpiurus and A. glomerata are also the species most tolerant of the acidic bottom water that normally is associated with brine formation.  相似文献   
10.
Very high resolution seismic investigations were carried out over a munition dumpsite in the Bornholm Basin, south-western Baltic Sea. After WW2 over 32,000 tons of chemical weapons were dumped in this area. The aim of the investigations was to image the internal structure of the dumpsite and to identify possible natural hazards with regard to the dumped war material. Two geophysical surveys were carried out in the summers of 2006 and 2007. During the surveys, acoustic sources with a distinct frequency spectrum (parametric echosounder, sparker, boomer) were deployed simultaneously. This approach proved very fruitful as it allowed to study the sediments in a wide depth range and in the highest possible detail. In total, seven seismic–stratigraphic units have been identified, related to different stages in the Holocene and late glacial history. Water depths range roughly between 96 m in the north and 70 m in the south where the basin shallows and older glacial sediments are outcropping. The seafloor topography at the dumpsite is generally quite flat, locally marked by small pit-like features that are probably related to the dumping impact. Small-scale fluid escape features are present throughout the dumpsite area. Large-scale doming occurs locally and is possibly linked to the migration of deep thermogenic gas. A large number of buried objects were identified on the acoustic data. Their burial depth is generally less than 1 m. The data confirm the wide variety of dumped war material, ranging from bombs and shells to encasements and containers. The distribution of the objects seems to be very heterogeneous, with locally high concentrations and areas of low object density. Four different shipwrecks were identified but their relation to the dumped warfare is not clear.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号