首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   61篇
  免费   5篇
测绘学   1篇
大气科学   3篇
地球物理   18篇
地质学   27篇
海洋学   11篇
天文学   3篇
自然地理   3篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2017年   3篇
  2016年   4篇
  2014年   2篇
  2013年   4篇
  2012年   7篇
  2010年   2篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2006年   5篇
  2005年   1篇
  2004年   2篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   1篇
  1996年   1篇
  1995年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1984年   1篇
  1983年   2篇
  1981年   1篇
  1980年   1篇
  1979年   1篇
  1977年   1篇
  1973年   1篇
排序方式: 共有66条查询结果,搜索用时 15 毫秒
1.
The stability and evolution of cold, shock-bounded slabs is studied using numerical hydrodynamic simulations. We confirm the analysis of Vishniac (1994) [ApJ, 428, 186], who showed that such slabs are unstable if they are perturbed by a displacement larger than their width. The growth rate of this nonlinear thin shell instability (NTSI) is found to increase with decreasing wavelength, in qualitative agreement with Vishniac's analysis. The NTSI saturates when the bending angle becomes large and the growth in the width of the slab pinches off the perturbation. After saturation, the slab remains greatly extended with an average density much less than the original slab density, supported primarily by supersonic turbulence within the slab. Linear perturbations are also found to be unstable in that they can lead to turbulent flow within the slab, although this response to linear perturbations is distinct from, and much less violent than the NTSI.Richard McCray  相似文献   
2.
Within the SLAM project (Service for Landslide Monitoring), launched in 2003 by the European Space Agency (ESA) the Permanent Scatterers (PS) technique, a multi-image interferometric approach, coupled with the interpretation of aerial-photos and optical satellite images, was carried out for landslide investigations. The PS analysis was applied at a regional scale as support for landslide inventory mapping and at local scale for the monitoring of single well-known slope movements. For the integration of the PS measurements within a landslide inventory the Arno river basin (Italy) was chosen as test site for the presence of a high number of mass movements (to date about 300 areas at high landslide risk and more than 27,000 individual landslides mapped by the institutional authorities). About 350 SAR images have been interferometrically processed by means of the PS technique, with the detection of about 600,000 PS. The use of optical images contributed spatial meaning to the point-wise information provided by the PS, making it easier to identify terrain features related to slope instability and the landslide boundaries. Here we describe the employed methodology and its impact in the updating of a preexisting landslide inventory. 6.8% of the total number of landslides were characterized by ground displacement measurements from the PS: 6.1% of already mapped landslides and 0.8% of new unstable areas detected through the PS analysis. Moreover, most of the PS are located in urban areas, showing that the proposed methodology is suitable for landslide mapping in areas with a quite high density of urbanization, but that over vegetated areas it still suffers from the limitations induced by the current space-borne SAR missions (e.g. temporal de-correlation). On the other hand, the use of InSAR for the monitoring of single slow landslides threatening built-up areas has provided satisfactory results, allowing the measurement of superficial deformations with high accuracy on the landslide sectors characterized by a good radar reflectivity and coherence.  相似文献   
3.
Ute Mann  Michael Marks  Gregor Markl   《Lithos》2006,91(1-4):262-285
The igneous rocks of the Katzenbuckel, Southwest Germany, represent a unique and unusual alkaline to peralkaline association within the European Volcanic Province. The magmatic activity can be subdivided into two main phases. Phase I comprises the main rock bodies of phonolite and nepheline syenite, which were later intruded by different peralkaline dyke rocks (tinguaites and alkali feldspar syenite dykes) of phase II. The dyke assemblage was accompanied by magnetite and apatite veins and was followed by a late-stage pneumatolytic activity causing autometasomatic alterations.

As is typical for alkaline to peralkaline igneous rocks, early mafic minerals of phase I rocks comprise olivine, augite and Fe–Ti oxides, which are substituted in the course of fractionation by Na-amphibole and Na-pyroxene. For the early magmatic stage, calculated temperatures range between 880 and 780 °C with low silica activities (0.4 to 0.6) but high relative oxygen fugacities between 0.5 and 1.9 log units above the FMQ buffer. Even higher oxygen fugacities (above the HM buffer) are indicated for the autometasomatic alteration, which occurred at temperatures between 585 and 780 °C and resulted in the formation of pseudobrookite and hematite.

The unusually high oxygen fugacities (even during the early magmatic stage) are recorded by the major element compositions of the mafic minerals (forsterite content in olivine between 68 and 78 mol%, up to 6.2 wt.% ZrO2 and 8.5 wt.% TiO2 in clinopyroxene), the unusual mineral assemblages (pseudobrookite, freudenbergite) and by the enrichment of Fe3+ in the felsic minerals (up to 2.8 wt.% Fe2O3 in alkali feldspar and up to 2.6 wt.% Fe2O3 in nepheline). These observations point to a metasomatically enriched and highly oxidized lithospheric mantle as a major source for the Katzenbuckel melts.  相似文献   

4.
We have identified an extinct E–W spreading center in the northern Natal valley on the basis of magnetic anomalies which was active from chron M11 (133 Ma) to 125.3 Ma, just before chron M2 (124 Ma) in the Early Cretaceous. Seafloor spreading in the northern Natal valley accounts for approximately 170 km of north–south motion between the Mozambique Ridge and Africa. This extension resolves the predicted overlap of the continental (central and southern) Mozambique Ridge and Antarctica in the chron M2 to M11 reconstructions from Mesozoic finite rotation parameters for Africa and Antarctica. In addition, the magnetic data reveal that the Mozambique Ridge was an independent microplate from at least 133 to 125 Ma. The northern Natal valley extinct spreading center connects to the spreading center separating the Mozambique Basin and the Riiser-Larsen Sea to the east. It follows that the northern Mozambique Ridge was either formed after the emplacement of the surrounding oceanic crust or it is the product of a very robust spreading center. To the west the extinct spreading center connects to the spreading center separating the southern Natal valley and Georgia Basin via a transform fault. Prior to chron M11, there is still a problem with the overlap of Mozambique Ridge if it is assumed to be fixed with respect to either the African or Antarctic plates. Some of the overlap can be accounted for by Jurassic deformation of the Mozambique Ridge, Mozambique Basin, and Dronning Maud land. It appears though that the Mozambique Ridge was an independent microplate from the breakup of Gondwana, 160 Ma, until it became part of the African plate, 125 Ma.  相似文献   
5.
We analyze errors in the global bathymetry models of Smith and Sandwell that combine satellite altimetry with acoustic soundings and shorelines to estimate depths. Versions of these models have been incorporated into Google Earth and the General Bathymetric Chart of the Oceans (GEBCO). We use Japan Agency for Marine-Earth Science and Technology (JAMSTEC) multibeam surveys not previously incorporated into the models as “ground truth” to compare against model versions 7.2 through 12.1, defining vertical differences as “errors.” Overall error statistics improve over time: 50th percentile errors declined from 57 to 55 to 49 m, and 90th percentile errors declined from 257 to 235 to 219 m, in versions 8.2, 11.1 and 12.1. This improvement is partly due to an increasing number of soundings incorporated into successive models, and partly to improvements in the satellite gravity model. Inspection of specific sites reveals that changes in the algorithms used to interpolate across survey gaps with altimetry have affected some errors. Versions 9.1 through 11.1 show a bias in the scaling from gravity in milliGals to topography in meters that affected the 15–160 km wavelength band. Regionally averaged (>160 km wavelength) depths have accumulated error over successive versions 9 through 11. These problems have been mitigated in version 12.1, which shows no systematic variation of errors with depth. Even so, version 12.1 is in some respects not as good as version 8.2, which employed a different algorithm.  相似文献   
6.
7.
The Reykjanes geothermal system is a seawater-recharged hydrothermal system that appears to be analogous to seafloor hydrothermal systems in terms of host rock type and low water/rock alteration. The similarities make the Reykjanes system a useful proxy for seafloor vents. At some time during the Pleistocene, the system was dominated by meteoric water recharge, and fluid composition at Reykjanes has evolved through time as a result of changing proportions of meteoric water influx as well as differing pressure and temperature conditions. The purpose of this study is to characterize secondary mineralization, degree of metasomatic alteration, and bulk composition of cuttings from well RN-17 from the Reykjanes geothermal system. The basaltic host rock includes hyaloclastite, breccia, tuff, extrusive basalt, diabase, as well as a marine sedimentary sequence. The progressive hydrothermal alteration sequence observed with increasing depth results from reaction of geothermal fluids with the basaltic host rock. An assemblage of greenschist facies alteration minerals, including actinolite, prehnite, epidote and garnet, occurs at depths as shallow as 350 m; these minerals are commonly found in Icelandic geothermal systems at temperatures above 250 °C (Bird and Spieler, 2004). This requires hydrostatic pressures that exceed the present-day depth to boiling point curve, and therefore must record alteration at higher fluid pressures, perhaps as a result of Pleistocene glaciation. Major, minor, and trace element profiles of the cuttings indicate transitional MORB to OIB composition with limited metasomatic shifts in easily mobilized elements. Changes in MgO, K2O and loss on ignition indicate that metasomatism is strongly correlated with protolith properties. The textures of alteration minerals reveal alteration style to be strongly dependent on protolith as well. Hyaloclastites are intensely altered with calc-silicate alteration assemblages comprising calcic hydrothermal plagioclase, grandite garnet, prehnite, epidote, hydrothermal clinopyroxene, and titanite. In contrast, crystalline basalts and intrusive rocks display a range in alteration intensity from essentially unaltered to pervasive and nearly complete albitization of igneous feldspar and uralitization of clinopyroxene. Hydrothermal anorthite (An92–An98) occurs in veins in the most altered basalt cuttings and is significantly more calcic than igneous feldspar (An48–An79). Amphibole compositions change from actinolite to hornblende at depth. Hydrothermal clinopyroxene, which occurs in veins, has greater variation in Fe content and is systematically more calcic than igneous pyroxene and also lacks uralitic textures. Solid solutions of prehnite, epidote, and garnet indicate evolving equilibria with respect to aluminum and ferric iron.  相似文献   
8.
The sedimentary structures, composition, and texture of sediments from the barrier coast complex (Matarangi Beach—Omaro Spit—Whangapoua Harbour) at Whangapoua, Coromandel Peninsula, are described. Sediments are mainly fine sands, rarely muddy or silty, and most are plagioclase feldsarenites, reflecting derivation from a predominantly Tertiary volcanic hinterland. Sediments from each of the modern environments, namely nearshore, foreshore, back‐shore, frontal dunes, tidal flats, and tidal channels, are characterised by a particular combination of sedimentary structures and subtle textural parameters. Dune ridge and barrier flat paleoenvironments on Omaro Spit were successfully identified by comparing their lithologic properties with the modern sediments. ‘Surficial’ sediments of the well‐preserved dune ridge system developed immediately inland from Matarangi Beach closely resemble those in the modern frontal dunes, and the ‘in depth’ dune ridge sediments are more analogous to the present foreshore sands. The barrier flat deposits separating the dune ridge system from Whangapoua Harbour have similar characteristics to the modern tidal flat sediments in the harbour.

Omaro Spit probably began as an offshore bar across the mouth of Whangapoua Harbour, an embayment formed by the post‐glacial drowning of a Late Tertiary dislocated fault‐block. Tidal flat sedimentation within the harbour formed the ancient barrier flat deposits which rise to at least 2 m above the modern harbour flats, suggesting local sea level at the time was higher than at present. During a subsequent cyclic fall in sea level, supratidal aeolian deposition led to a succession of 15 to 18 parallel dune ridges developed on high‐tide berms. Linear regression analyses of dune ridge and swale heights and the height distribution of positive (aeolian) and negative (beach foreshore) skewness values and of contrasting sedimentary structures in dune ridgL paleosediments, together with the stages in dune soil development across the barrier, suggest initial sedimentation occurred from 4000–5000 years ago when local sea level was 2–3 m above present mean high water level. Barrier progradation was interrupted by an important period of coastal erosion during a temporary rise in sea level immediately before deposition in the dune ridge system of a layer of 2000‐year‐old sea‐rafted Leigh Pumice. Sea level probably reached its modern position at Whangapoua about 1000 years ago, since when some evidence suggests the barrier spit may have experienced minor uplift.  相似文献   
9.
The visible and infrared radiometer (VIRR) is a scanner for the collection of digital data in the visible and thermal-infrared portions of the spectrum over broad swaths of the earth's surface [1]. Some of the essential electronic and mechanical details of the system are described; and the results of an engineering assessment of its operation in orbit are given. The set of algorithms used to transform the raw VIRR data to calibrated geophysical measurements is discussed. Some of the results of a preliminary geophysical evaluation are presented.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号