首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   1篇
天文学   1篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   1篇
  2000年   1篇
  1994年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
Nicolas  A.  Ildefonse  B.  Boudier  F.  Lenoir  X.  Ben Ismail  W. 《Marine Geophysical Researches》2000,21(3-4):269-287
Mafic dikes and dunite veins are observed in the mantle section of the Oman – United Arab Emirates (O-UAE) ophiolites, as well as diabase dikes and hydrothermal veins in the crust section. They have been systematically measured during the mapping of this ophiolite and are represented by their trajectories in the folded map 3 in the back of this volume, and by local stereoplots included in this study. Mafic dikes in the mantle section correspond to basaltic melt being injected at decreasing temperatures from above or at peridotite solidus, down to below 450°C. Hydrothermal veins associated with dioritic dikes issued from hydrous melting of host gabbros are observed down to the base of the crust, bearing evidence for sea water penetration into basal gabbros at or above 900°C, that is very close to the ridge axis. Dike orientations record the stress field at the time of their injection. In most places, all types of dikes are dominantly parallel to the general trend of the nearest sheeted dike complex; thus the stress field has not visibly changed from melt injection in the asthenosphere below the ridge of origin to injection in a lithosphere up to a few Myr old, at distances beyond 100 km from the axis. Local preferred orientations, when they are considered in the frame of the paleo-ridge system of O-UAE, result in a coherent model throughout the belt: the sheeted dike complex dips moderately away from the presumed ridge axis and the mantle dikes, toward this axis. These opposite directions are explained by the presumed effect of subsidence toward the axis for the sheeted dikes and by the central feeding from an asthenospheric uprise for the mantle dikes.  相似文献   
4.
Average proton binding constants (KH,i) for structure models of humic (HA) and fulvic (FA) acids were estimated semi-empirically by breaking down the macromolecules into reactive structural units (RSUs), and calculating KH,i values of the RSUs using linear free energy relationships (LFER) of Hammett. Predicted log KH,COOH and log KH,Ph-OH are 3.73 ± 0.13 and 9.83 ± 0.23 for HA, and 3.80 ± 0.20 and 9.87 ± 0.31 for FA. The predicted constants for phenolic-type sites (Ph-OH) are generally higher than those derived from potentiometric titrations, but the difference may not be significant in view of the considerable uncertainty of the acidity constants determined from acid-base measurements at high pH. The predicted constants for carboxylic-type sites agree well with titration data analyzed with Model VI (4.10 ± 0.16 for HA, 3.20 ± 0.13 for FA; Tipping, 1998), the Impermeable Sphere model (3.50-4.50 for HA; Avena et al., 1999), and the Stockholm Humic Model (4.10 ± 0.20 for HA, 3.50 ± 0.40 for FA; Gustafsson, 2001), but differ by about one log unit from those obtained by Milne et al. (2001) with the NICA-Donnan model (3.09 ± 0.51 for HA, 2.65 ± 0.43 for FA), and used to derive recommended generic values. To clarify this ambiguity, 10 high-quality titration data from Milne et al. (2001) were re-analyzed with the new predicted equilibrium constants. The data are described equally well with the previous and new sets of values (R2 ? 0.98), not necessarily because the NICA-Donnan model is overparametrized, but because titration lacks the sensitivity needed to quantify the full binding properties of humic substances. Correlations between NICA-Donnan parameters are discussed, but general progress is impeded by the unknown number of independent parameters that can be varied during regression of a model fit to titration data. The high consistency between predicted and experimental KH,COOH values, excluding those of Milne et al. (2001), gives faith in the proposed semi-empirical structural approach, and its usefulness to assess the plausibility of proton stability constants derived from simulations of titration data.  相似文献   
5.
A new catalytic dehydrohalogenation method for chlorinated phenols is described, which can be used to break down chlorinated pollutants in wastewater. It uses a system of Pd‐C as catalyst with sodium formate as reducing agent. This economic method is easy to perform with a complete degradation of the pollutant within 12 to 30 h at room temperature. The ecoefficieny of the procedure is compared with eleven alternative methods showing the special advantages of the method.  相似文献   
6.
Granitoids within the Precambrian basement of north-eastern and southern Somalia are subdivided on the basis of geology, geochronology and petrology into three different assemblages. The post-kinematic assemblage in north-eastern Somalia ( 630 Ma) comprises granodiorites and granites which belong to a medium-K calc-alkaline suite. Average initial Sr, Nd and Pb isotopic ratios [Sri = 0.7048, Nd = –1.8,206Pb/204Pb(i) = 17.704 and207Pb/204Pb(i) = 15.611] indicate that these melts were derived from a mantle or juvenile crustal source with only slight involvement of pre-existing crust as a contaminant. Two different assemblages are found in southern Somalia. The older assemblage is composed of crustal anatectic, synkinematic, parautochthonous granites ( 600 Ma) related to amphibolite facies retrogression of an intensively reworked pre-Pan-African crust [Sri = 0.7100, Nd = –8.4,206Pb/204Pb(i) = 15.403 and207Pb/204Pb(i) = 15.259]. These monzo- and syenogranites are moderately potassic and peraluminous. The younger assemblage ( 470 Ma) consists of post-kinematic monzonites to syenogranites with A-type affinities. Initial Sr, Nd and Pb isotopic data for this metaluminous assemblage [Sri = 0.7114, Nd = –13.1,207Pb/204Pb(i) = 16.913 and207Pb/204Pb(i) = 15.512] indicate a significant lower crustal component but, however, also a mantle signature. The late Proterozoic to early Palaeozoic granitoids in Somalia thus express contrasting regimes, characterized by strong juvenile input in the north, close to the Arabian-Nubian Shield, whereas intense crustal reworking with little addition of juvenile material prevailed in the south. Somalia was definitively not a cratonic area during the Pan-African, but a zone of high crustal mobility.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号