首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地球物理   2篇
地质学   2篇
海洋学   1篇
  2009年   1篇
  2008年   1篇
  2007年   1篇
  2006年   1篇
  2004年   1篇
排序方式: 共有5条查询结果,搜索用时 5 毫秒
1
1.
Eivissa slides, western Mediterranean Sea: morphology and processes   总被引:1,自引:0,他引:1  
After obtaining full-coverage swath bathymetry data in 1995 and very high-resolution acoustic profiles in 2002, four slides at the Balearic Margin of the Eivissa Channel in the western Mediterranean Sea were revisited in 2004 when side-scan sonar data were collected using a MAK-1M deep-towed acoustic system. These new findings, higher in resolution than those for the swath bathymetry, show two main features previously undetected within these submarine landslides: (1) a series of step-forming inclined and detached slabs oriented perpendicular to the slide movement and located in the uppermost part of the slides, and (2) arcuate regular positive ridges oriented also normal to the slide movement and located in the depositional lobes of some of the slides. The former are interpreted as extensional ridges, suggesting a retrogressive post-failure evolution of the slides. The latter are interpreted as compression ridges, related to plastic deformation of the sediment before movement freezing. Moreover, the new data show that fluid escape features are even more widespread in the Eivissa Channel than previously thought, dozens of new pockmarks less than 20 m in diameter having been identified.  相似文献   
2.
The Barcelona continental shelf, off the city of Barcelona (NE Spain), is a relatively narrow canyon-bounded shelf in the northwestern Mediterranean Sea. Three medium-size rivers (Tordera, Besós and Llobregat) and several ephemeral rivulets flow into this margin. Two main domains have been recognized in the Barcelona shelf: (i) a modern, river-influenced area, and (ii) a relict, sediment depleted area, both affected by a variety of human impacts. A detailed geomorphologic study based on multibeam bathymetry and backscatter data, high resolution seismic profiles, and surface sediment samples allowed mapping and interpreting the main distinctive seafloor features on the Barcelona shelf. Modern sedimentary features reveal that the Llobregat River is the main sediment source of the Barcelona prodeltaic shelf. High-discharge fluvial events result in the formation of suspended sediment plumes and sediment waves on the shelf floor. Relict (late Pleistocene–Holocene) sedimentary features reflect that an important shift occurred in the seashore direction between MIS 4 and MIS 2, and that recent neotectonic reactivation has created a set of seafloor faults. The Barcelona inner and middle shelf is severely impacted by anthropogenic activities such as the enlargement works of the Port of Barcelona, sewage pipes, dredging, anchoring and trawling.  相似文献   
3.
To investigate the processes by which sediment is transported through a submarine canyon incised in a continental margin affected by recurrent dense shelf water cascading events, several instrumented moorings were deployed in the Cap de Creus Canyon from September 2004 to September 2005. This was done as part of the EuroSTRATAFORM Program that investigated sediment transport and accumulation processes in the Gulf of Lions. Results obtained in this observational study confirm that major cascading events can effectively contribute to the rapid export of sediment from the shelf and upper slope to deeper environments, and suggest that the associated strong currents carrying coarse particles are able to erode the canyon floor and generate sedimentary furrows. During winter 2004–2005, persistent northerly winds and the absence of river floods contributed to decrease the buoyancy of coastal waters and to dramatically enhance the intensity of dense shelf water cascades in the Gulf of Lions. Under such conditions, cascading continuously affected the entire Cap de Creus upper canyon section for more than a month and sustained cold temperatures and down-canyon steady currents >60 cm/s (up to 100 cm/s), showing periodic fluctuations that lasted between 3 and 6 days. Increases in suspended sediment concentrations were associated with dense shelf water cascading outbursts, but the magnitude of the concentration peaks decreased with time, suggesting a progressive exhaustion of the resuspendable sediments from the shelf and canyon floor. Grain size analyses of the particles caught by a near-bottom sediment trap show that dense shelf water cascades are able to transport coarse sediments (up to 65% sand) in suspension (and presumably as bed load), which have the potential to abrade the seafloor and generate erosive bed forms. The orientation of a large field of “wide” (i.e., widths about 1/2 spacing indicative of erosive formation) sedimentary furrows recently observed in the Cap de Creus Canyon clearly coincides with the preferential direction of highest velocities measured by the moored current meters, indicating a causative relationship between contemporary dense shelf water cascades and furrow formation.  相似文献   
4.
We present the seafloor morphology and shallow seismic structure of the continental slope south-east of the Balearic promontory and of the adjacent Algero-Balearic abyssal plain from multibeam and chirp sonar data. The main purpose of this research was to identify the sediment pathways from the Balearic promontory to the Algero-Balearic deep basin from the Early Pliocene to the Present. The morphology of the southern Balearic margin is controlled by a SW–NE structural trend, whose main expressions are the Emile Baudot Escarpment transform fault, and a newly discovered WSW–ENE trend that affects the SW end of the escarpment and the abyssal plain. We relate the two structural trends to right-lateral simple shear as a consequence of the Miocene westward migration of the Gibraltar Arc. Newly discovered steep and narrow volcanic ridges were probably enabled to grow by local transtension along the transform margin. Abyssal plain knolls and seahills relate to the subsurface deformation of early stage halokinetic structures such as salt rollers, salt anticlines, and salt pillows. The limited thickness of the overburden and the limited amount of deformation in the deep basin prevent the formation of more mature halokinetic structures such as diapirs, salt walls, bulbs, and salt extrusions. The uppermost sediment cover is affected by a dense pattern of sub-vertical small throw normal faults resulting from extensional stress induced in the overburden by subsurface salt deformation structures. Shallow gas seismic character and the possible presence of an active polygonal fault system suggest upward fluid migration and fluid and sediment expulsion at the seafloor through a probable mud volcano and other piercement structures. One large debris flow deposit, named Formentera Debris Flow, has been identified on the lower slope and rise of the south Formentera margin. Based on current observations, we hypothesize that the landslide originating the Formentera Debris Flow occurred in the Holocene, perhaps in historical times.
Angelo CamerlenghiEmail:
  相似文献   
5.
Four slides, the Ana, Joan, Nuna and Jersi slides, have been imaged on the seafloor along the Balearic margin of the Eivissa Channel in the western Mediterranean. They have areas of up to 16 km2 and occur in water depths ranging between 600 and 900 m. Volumes range from 0·14 to 0·4 km3. Their headwall scarps, internal architecture and associated deposits are characterized using a combination of swath bathymetry data and very high‐resolution seismic reflection profiles. In general, they show horseshoe‐shaped headwall scarps and distinct depositional lobes with positive relief. Internally, the slide bodies are mostly composed of transparent seismic facies. Chaotic facies are observed at the toe of some of the slides, and blocks of coherent stratified facies embedded in the slide deposit have also been identified. The reflection profiles demonstrate that the four slides share the same slip horizon, which corresponds to a distinctive continuous, high‐amplitude reflector. Furthermore, the geometry of the headwall scars of the Nuna and Ana slides reveals evidence of pockmarks, and fluid escape features are also present further upslope. This indicates a possible link between fluid escape features and destabilization of the upper sediment layers. In addition, these well‐characterized slides demonstrate the pitfalls associated with calculating the volume of the slide masses using headwall scarp heights and the assumed preslide seafloor topography in the absence of seismic data. The internal structure also demonstrates that transport distances within the slides are generally low and poorly characterized by headwall scarp to slide toe lengths.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号