首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   24篇
  免费   0篇
地球物理   4篇
地质学   17篇
海洋学   1篇
综合类   1篇
自然地理   1篇
  2021年   1篇
  2018年   1篇
  2017年   2篇
  2016年   1篇
  2014年   1篇
  2011年   3篇
  2009年   3篇
  2008年   3篇
  2007年   2篇
  2006年   4篇
  2002年   1篇
  2000年   1篇
  1971年   1篇
排序方式: 共有24条查询结果,搜索用时 237 毫秒
1.
2.
Several episodes of kimberlite magmatism occurred in the East European Province (EEP) during a long (about 1.5 Gyr) time period, from the Late Paleoproterozoic (ca. 1.8 Ga) in the Archean Ukrainian and Baltic shields to the Middle Paleozoic (ca. 0.36 Ga) mainly in the Arkhangelsk, Timan, and adjacent regions. Based on the analysis of data on 16 kimberlite occurrences and four lamproite occurrences within the EEP, five time stages can be distinguished; one of them, the Middle Paleozoic stage (Middle Ordovician and Devonian), is the most productive epoch for diamond in the northern hemisphere (EEP, Siberian Craton, and part of the China Craton). The analysis of petrological and geochemical characteristics of kimberlites (lamproites were studied less thoroughly) revealed variations in rock composition and their correlation with a number of factors, including the spatial confinement to the northern or southern Archean blocks of the craton, time of formation of the source of kimberlite melts, contents of volatiles and autoliths, etc. Three petrogeochemical types of kimberlites were distinguished: high-, medium-, and low-Ti (TiO2 > 3 wt %, 1–3 wt %, and <1 wt %, respectively). There are two time intervals of the formation of kimberlite and lamproite sources in the EEP, corresponding to TNd(DM) values of about 2 Ga (up to 2.9 Ga in the Por’ya Guba occurrence) and 1 Ga. The latter interval includes two groups of occurrences with model source ages of about 1 Ga (low-and medium-Ti kimberlites of the Zolotitsa and Verkhotina occurrences) and about 0.8 Ga (high-Ti kimberlites of the Kepino and a number of other occurrences); i.e., there seems to be an evolutionary trend in the composition of kimberlites. Concentric zoning patterns were recognized. The role of the crust in kimberlite sources is discussed; it is assumed that buried remnants of the oceanic lithosphere (megaliths) may underlie whole continents. A unique feature of the composition of low-Ti kimberlites, for instance, kimberlites of the Zolotitsa occurrence (to a smaller extent, medium-Ti kimberlites of the V. Grib pipe) is the distinct depletion of highly charged elements and pronounced negative anomalies of Ti, Zr, Th, U, Nb, and Ta in trace-element distribution patterns, which indicates a contribution of crustal material to the source of these kimberlites. It was shown that autoliths exert a significant influence on the differentiation of kimberlite material, resulting in the enrichment of rocks in the whole spectrum of incompatible elements. It was argued that geochemical criteria can be used together with traditional criteria (including those based on indicator minerals) for the assessment of diamond potential in EEP occurrences. We hope that such a combined approach will yield important outcomes in the future.  相似文献   
3.
Cobalt and its compounds have a broad field of application in Russian industries, being essential raw materials for metallurgy, medicine, and agriculture. That is why the production of cobalt is one of the key industries in Russia. Cobalt is produced from mineral raw materials as well as from secondary raw materials (for example, after processing of spent catalysts of oil refinery). It can also be obtained as a by‐product of nickel, manganese, and some other metals processing. That is the reason why the solutions of Ni and Mn industries contain up to 50 g/L of cobalt. obalt compounds are harmful for men’s heart, bloodvessel system, and thyroid gland. This fact explains the importance of the monitoring of cobalt concentrations in natural water and sewages. This task can be effectively achieved using the analytical sorption technique. The present work is focused on the preconcentration of cobalt and its determination by means of diffuse reflection spectroscopy. The preconcentration of cobalt was carried out using the macronetwork cation exchangers KB‐2M and KB‐2‐3T synthesized on the basis of methyl acrylate and long‐chain cross‐linking agents copolymers. Based on these collectors, a cobalt determination method in industrial solutions was worked out using solid‐phase spectroscopy. The colored surface compound to be determined was obtained by a preceding cobalt sorption on the resin and by subsequent treatment of the concentrate obtained with definite amount of nitroso‐R‐salt. The Co calibration curve is linear in the concentration range of 0.05...0.50 mg/L Co (sample volume is 50.0 mL) and the detection limit is 0.02 mg/L (1 μg absolute).  相似文献   
4.
5.
6.
Kimberlites with different diamond grades from the Zolotitsa, Verkhotina, and Kepina occurrences of the Zimny Bereg field (Arkangel’sk oblast) have been compared in order to ascertain geochemical criteria of their diamond resource potential. A new collection of 21 core samples taken within a depth interval of 207–940 m from nine boreholes drilled in the central and western portions of the high-grade diamond-bearing Grib kimberlite pipe was subjected to comprehensive petrographic and geochemical examination, including Sr, Nd, and Pb isotopes and trace elements determined with ICP-MS. The compositional variations in kimberlites are controlled by the structural types of rocks. Porphyritic kimberlite (PK) distinctly differs from autolithic kimberlite breccia (AKB). Autoliths (Av) and PK are enriched in Th, U, Nb, Ta, La, Ce, Pr, P, Nd, Sm, Eu, Ti, LREE, and MREE, whereas HREE contents are rather uniform in all types of kimberlites. No lateral zoning was observed in pipes pertaining to the same structural type. The composition of kimberlites in the Zimny Bereg field and their diamond resource potential are variable. In the series of the Zolotitsa, Verkhotina, and Kepina occurrences, the Ti content increases, the La/Yb ratio grows from 18–44 to 70–130, and the diamond grade diminishes in the Kepina occurrence. The variations in kimberlite compositions are considered in terms of the degree of partial melting in the mantle, the role of volatiles, etc. As follows from the variation in the Ce/Y ratio, kimberlites from the Zolotitsa occurrence were formed at a lower degree of partial melting in comparison with the Kepina occurrence. Products of different degrees of partial melting are recognized within the Grib pipe; Av were likely formed at a somewhat higher degree of melting than AKB. An appreciable isotopic heterogeneity of the mantle is recorded in variable Nd and Sr isotopic compositions of kimberlites. The Kepina kimberlites were derived from a source slightly depleted relative to CHUR (?Nd(t) reaches +4) and are close to kimberlites of group I in South Africa. Kimberlites from the Grib pipe with transitional Nd isotopic composition plotted near the Bulk Silicate Earth (BSE) value in the ?Nd(t)-?Sr(t) diagram adjoin the first group. The source of kimberlites of the Zolotitsa occurrence falls in the field of enriched mantle and is considered to be a product of interaction of an asthenospheric plume with the ancient enriched lithospheric mantle. Kimberlites depleted in Ti, Zr, and Th are related to a source formed as a result of a multistage process that included mantle metasomatism with participation of fluids. Devonian kimberlites derived from sources that involve crustal material (a shift of 206Pb/204Pb, minimums of Th, U, Nb, and Ta contents) are diamond-bearing both in the East European Platform (the Zolotitsa and Verkhotina occurrences) and in the Siberian Craton (the Nakyn field).  相似文献   
7.
Influence of atmospheric circulation on precipitation in Altai Mountains   总被引:2,自引:0,他引:2  
We analyzed the changes in precipitation regime in the Altai Mountains for 1959-2014 and estimate the influence of atmospheric circulations on these changes. Our study showed that during last 56 years the changes in the precipitation regime had a positive trend for the warm seasons(April-October),but weakly positive or negative trends for the cold seasons(November-March). It was found that these changes correspond to the decreasing contribution of “Northern meridional and Stationary anticyclone(Nm-Sa)” and “Northern meridional and East zonal(Nm-Ez)” circulation groups and to the increasing contribution of “West zonal and Southern meridional(Wz-Sm)” circulation groups,accordingly to the Dzerdzeevskii classification. In addition,it was found that the variation of precipitation has a step change point in 1980. For the warm seasons,the precipitation change at this point is associated with the reduced influence of “West zonal(Wz)”,“Northern meridional and Stationary anticyclone(Nm-Sa)” and “Northern meridional and Southern meridional(Nm-Sm)” circulation groups. For the cold seasons,a substantialincrease of “Wz-Sm” and a decrease of “Nm-Sa”,“Nm-Ez” circulation groups are responsible for the precipitation change in the two time periods(1959-1980 and 1981-2014).  相似文献   
8.
Based on original data on the East European and Siberian platforms and materials on the best studied foreign objects, a comparative analysis of kimberlites and lamproites was conducted and the criteria of their differences were formulated. Among most significant differences are the following: (1) the high-Mg potassic rocks (kimberlites and lamproites) show major-component variations, which are significantly wider in lamproites as compared to kimberlites. Kimberlites differ from lamproites not only in the content of SiO2, but also in alkalis, volatiles, and some trace elements. Kimberlites are characterized by CO2-dominated regime, whereas formation of lamproites was assisted by essentially H2O fluid; (2) Kimberlites are localized within ancient cratons, while within-plate lamproites are restricted to adjacent Proterozoic belts. Kimberlites are produced in the low-heat flow regions, whereas lamproites occur in the high-heat flow regions; (3) Kimberlites and lamproites were formed in different time; in particular, most productive kimberlitic magmatism was observed in the EEP and SP in the Devonian; (4) Kimberlite and lamproite bodies have different morphology: lamproites compose small subvolcanic bodies with lava flows, while kimberlites form volcanic pipes with no lavas; (5) Kimberlites contain highly silica-undersaturated minerals, while ultrabasic lamproites—silica-undersaturated ones; priderite and wadeite, the characteristic accessory minerals of lamproites, are not observed in kimberlites; (6) The primary melts of kimberlites and lamproites were derived from different types of mantle. The moderate and low-Ti kimberlites were generated from BSE or EMI type mantle. Precisely these types of kimberlites host diamond deposits, including economic grade objects in EEP. The lamproite sources were localized only in the enriched mantle (EMI and EMII). At the same time, these rocks share some similarities, primarily, with respect to their genesis and classification. Diamonds are common accessory minerals of kimberlites (low-Ti and some other types), but are observed only in only lamproite variety—olivine lamproites.  相似文献   
9.
Suitability of unmetamorphosed nepheline for alkaline rock dating is examined. It is shown that only a considerable amount (more than 10%) of secondary minerals such as cancrinite, wischnewite, and sometime spreustein (1) can falsily the results of age determination from nepheline. The possible presence of excess argon in secondary minerals, though rather infrequent, should also be taken into account.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号