首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
海洋学   3篇
  2005年   1篇
  2000年   2篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
The state of the art in underwater acoustic telemetry   总被引:6,自引:0,他引:6  
Progress in underwater acoustic telemetry since 1982 is reviewed within a framework of six current research areas: (1) underwater channel physics, channel simulations, and measurements; (2) receiver structures; (3) diversity exploitation; (4) error control coding; (5) networked systems; and (6) alternative modulation strategies. Advances in each of these areas as well as perspectives on the future challenges facing them are presented. A primary thesis of this paper is that increased integration of high-fidelity channel models into ongoing underwater telemetry research is needed if the performance envelope (defined in terms of range, rate, and channel complexity) of underwater modems is to expand  相似文献   
2.
Spatial modulation experiments in the underwater acoustic channel   总被引:1,自引:0,他引:1  
A modulation technique for increasing the reliable data rate achievable by an underwater acoustic communication system is presented and demonstrated. The technique, termed spatial modulation, seeks to control the spatial distribution of signal energy such that the single physical ocean channel supports multiple parallel communication channels. Given a signal energy constraint, a communication architecture with access to parallel channels will have increased capacity and reliability as compared to one with access to a single channel. Results from two experiments demonstrate higher obtainable data rates and power throughput for a system employing spatial modulation than for one that does not. The demonstrated benefits were characterized by an equivalent SNR gain of over 5 dB in the first experiment. In the second experiment, using two element source and receiver arrays with apertures of 0.9 m, a coherently modulated signal was shown to offer nearly 50% greater capacity by using spatial modulation than by using temporal modulation alone.  相似文献   
3.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号