首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   128篇
  免费   3篇
  国内免费   1篇
测绘学   1篇
大气科学   3篇
地球物理   22篇
地质学   22篇
海洋学   49篇
天文学   28篇
综合类   1篇
自然地理   6篇
  2022年   2篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2017年   4篇
  2016年   5篇
  2014年   7篇
  2013年   4篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   9篇
  2008年   6篇
  2007年   7篇
  2006年   8篇
  2005年   5篇
  2004年   5篇
  2003年   7篇
  2002年   4篇
  2001年   1篇
  1999年   6篇
  1998年   2篇
  1997年   6篇
  1996年   5篇
  1995年   4篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1986年   6篇
  1985年   3篇
  1980年   3篇
  1979年   1篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
排序方式: 共有132条查询结果,搜索用时 31 毫秒
1.
Concentrations of total carbonate, alkalinity and dissolved oxygen were obtained near the 1973 GEOSECS stations in the North Pacific subpolar region north of 40°N along 175°E between 1993 and 1994. A difference of excess CO2 content between the GEOSECS and our expeditions was estimated. The maximum difference in water column inventory of excess CO2 has increased by about 280 gC m–2 above 2000 m depth which apparently means an uptake of excess CO2 taken from air to sea during the last two decades. An averaged value of the annual flux of excess CO2 at 75–1000 m depth was 8.63±2.01 gC m–2yr–1 in the North Pacific subpolar region. By introducing the annual flux of excess CO2 into a two-box model for the North Pacific subpolar region, a penetration factor of excess CO2 from air to sea was obtained to be 1.08×10–2 gC m–3ppm–1 in the North Pacific subpolar region. Based on this factor, the surface concentration of excess CO2 in the North Pacific subpolar region was estimated to be 68 mole I–1, suggesting that the North Pacific subpolar region absorbed atmospheric excess CO2 more than the saturated concentration of excess CO2. Total amount of excess CO2 taken from the North Pacific subpolar region by 1993 was estimated to be 36.2×1015 gC, which was equal to about one tenth of that released by human activities after the preindustrial era.  相似文献   
2.
Radiocarbon and total carbonate data were obtained near the 1973 GEOSECS stations in the North Pacific along 30°N and along 175°E between 1993 and 1994. In these stations, we estimated radiocarbon originating from atomic bomb tests using tritium, trichlorofluoromethane and silicate contents. The average penetration depth of bomb radiocarbon during the two decades has deepened from 900 m to 1300 m. Bomb radiocarbon inventories above the average value for the whole North Pacific were found widely in the western subtropical region around 30°N both in the 1970s and 1990s, and its area in the 1990s was broader than that in the 1970s. In most of the North Pacific, while the bomb radiocarbon has decreased above 25.4, the bomb radiocarbon flux below 25.4 was over 1 × 1012 atom m-2yr-1 in the subtropical region around 30°N. In the tropical area south of 20°N, the bomb radiocarbon inventory below 25.4 increased from zero to over 10 × 1012 atom m-2 during the last three decades. These distributions suggest that the bomb radiocarbon removed from the surface is currently accumulated with bomb 14C flux of over 1 × 1012 atom m-2yr-1 below 25.4 in the subtropical region, mainly by advection from the higher latitude, and that part of the accumulated bomb 14C gradually spread southward with about 30 years.  相似文献   
3.
Hydrographic data and composite current velocity data (ADCP and GEK) were used to examine the seasonal variations of upper-ocean flow in the southern sea area of Hokkaido, which includes the “off-Doto” and “Hidaka Bay” areas separated by Cape Erimo. During the heating season (April–September), the outflow of the Tsugaru Warm Current (TWC) from the Tsugaru Strait first extends north-eastward, and then one branch of TWC turns to the west along the shelf slope after it approaches the Hidaka Shelf. The main flow of TWC evolves continuously, extending eastward as far as the area off Cape Erimo. In the late cooling season (January–March), part of the Oyashio enters Hidaka Bay along the shallower part of the shelf slope through the area off Cape Erimo, replacing almost all of the TWC water, and hence the TWC devolves. It is suggested that the bottom-controlled barotropic flow of the Oyashio, which may be caused by the small density difference between the Oyashio and the TWC waters and the southward migration of main front of TWC, permits the Oyashio water to intrude along the Hidaka shelf slope.  相似文献   
4.
We discussed the branching and joining of the Tsushima Current around the Oki Islands, based on ADCP and CTD measurements carried out in June 1990 by the quadrireciprocal method (Katoh, 1988). The volume transport of the northeastward current northwest of the Izumo Coast was about 2 Sv. The triple-branch structure of the Tsushima Current was obscure there. This northeastward current divided into the eastward and northward currents, with volume transports of 0.5 Sv and 1.5 Sv, respectively, at the west entrance of the Oki Strait. Most of the first branch of the Tsushima Current seemed to be separated again from the other confluent branches and to pass through the Oki Strait as this eastward current. The northward current was composed of the second and the third branches of the Tsushima Current. It detoured the Oki Islands, and almost all of it returned south to the Tajima Coast. In the vicinity of the Tajima Coast, the eastward current was abruptly strengthened through the confluence of the southward one which was originated from the northward current west of the Oki Islands. This showed that the first branch finally joined the compound of the second and the third branches detouring the Oki Islands. Between the Oki Strait and the Tajima Coast, the two-layer structure of currents was clearly found.  相似文献   
5.
Thirteen vertical profiles of 226Ra and 222Rn in the near-surface water were obtained in the western North Pacific in winter, and the gas transfer velocities across the air-sea interface were estimated. The transfer velocities found by applying a steady state model varied widely from 2.1 to 30.2 m day−1 with a mean of 9.4 m day−1. The mean value is almost 5 times higher than that in summer in other oceans, and the maximum value is a record high for world oceans. This is partly due to the inadequacy of the steady state model, which overestimates when stronger winds blow in more recent days than the 222Rn half-life of about 4 days. In fact, a strong low pressure zone passed through the station about 2 days earlier, which was one of the low pressure zones that with a period of develop once a week or so in the northwestern North Pacific in winter. Instead of steady-state removal, if half of the radon removal occurred sporadically every 7 days, and the last removal took place two days before the observation, the transfer velocity would be 26 m day−1. Our mean transfer velocity, which is less than 20% different from the steady state value including both overestimated and underestimated values, 9.4 ± 4.8 m day−1, seems to represent the mean state of this region in winter. This suggests that the gas exchange fluxes under extremely rough conditions in the open ocean are larger than those estimated by using a transfer velocity equation with a linear or quadratic relationship with wind speed. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
6.
7.
The objective of this study is to investigate the effects of an open gap, such as a road, in a coastal forest on tsunami run-up. A numerical model based on two-dimensional nonlinear long-wave equations was developed to account for the effects of drag and turbulence induced shear forces due to the presence of vegetation. Experiments were conducted on a forest simulated with vertical cylinders by changing the gap width. The numerical model was validated in good agreement with the experimental results. The numerical model was then applied to a wide forest of Pandanus odoratissimus, a tree species that is a dominant coastal vegetation on a sand dune in South and Southeast Asia. The effect of vertical stand characteristics of P. odoratissimus with aerial roots was considered on the drag resistance. A straight open gap perpendicular to the shoreline was used to investigate the effect of gap width. As the gap width increases, the flow velocity at the end of the open gap first increases, reaches a maximum, and then decreases, while the run-up height increases monotonously. The maximum velocity in the present condition is 1.7 times the maximum velocity without a coastal forest. The effects of different gap arrangements in the forest on tsunami run-up were also investigated in this paper. The flow velocity at the end of an open gap can be reduced by a staggered arrangement.  相似文献   
8.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   
9.
Abstract   The lithology of shallow-water carbonates collected from 19 sites on 16 seamounts in six areas of the northwestern Pacific Ocean using the Deep-sea Boring Machine System are described. The areas include the Amami Plateau, Daito Ridge, Oki-Daito Ridge, Urdaneta Plateau, Kyushu-Palau Ridge and Ogasawara Plateau. Chronological constraint is provided by calcareous nannofossil biostratigraphy, planktonic foraminiferal biostratigraphy, larger foraminiferal biostratigraphy and strontium (Sr) isotope stratigraphy. Large amounts of shallow-water carbonates accumulated on the seamounts during the Oligocene, a relatively cool period, whereas limited carbonate deposits formed during the Early Miocene, a relatively warm period. This might indicate that deposition of shallow-water carbonates on seamounts in the northwestern Pacific Ocean was not necessarily controlled by climatic conditions, but was related to volcanism and tectonics that served as foundations for reef/carbonate-platform formation. Remarkable differences in biotic composition exist between Cretaceous and Cenozoic shallow-water carbonates. Late Cretaceous shallow-water carbonates are distinguished by the occurrence of rudists, solenoporacean algae and microencrusters. Middle Eocene to Early Oligocene shallow-water carbonates are dominated by Halimeda or nummulitid and discocyclinid larger foraminifers. Scleractinian corals became common from the Oligocene onward. Nongeniculate coralline algae and larger foraminifers were common to abundant throughout the Eocene to the Pleistocene. The replacement of major carbonate producers in the shallow-water carbonate factory during post-Cretaceous time is in accordance with previous studies and is considered to reflect a shift in seawater chemistry.  相似文献   
10.
Relationships between solar wind speed and expansion rate of the coronal magnetic field have been studied mainly by in-ecliptic observations of artificial satellites and some off-ecliptic data by Ulysses. In this paper, we use the solar wind speed estimated by interplanetary scintillation (IPS) observations in the whole heliosphere. Two synoptic maps of SWS estimated by IPS observations are constructed for two Carrington rotations CR 1830 and 1901; CR 1830 starting on the 11th of June, 1990 is in the maximum phase of solar activity cycle and CR 1901 starting on the 29th of September, 1995 is in the minimum phase. Each of the maps consist of 64800 (360×180) data points. Similar synoptic maps of expansion rate of the coronal magnetic field (RBR) calculated by the so-called potential model are also constructed under a radial field assumption for CR 1830 and CR1901. Highly significant correlation (r=–0.66) is found between the SWS and the RBR during CR1901 in the solar minimum phase; that is, high-speed winds emanate from photospheric areas corresponding to low expansion rate of the coronal magnetic field and low speed winds emanate from photospheric areas of high expansion rate. A similar result is found during CR 1830 in solar maximum phase, though the correlation is relatively low (r=–0.29). The correlation is improved when both the data during CR 1830 and CR 1901 are used together; the correlation coefficient becomes –0.67 in this case. These results suggest that the correlation analysis between the SWS and the RBR can be applied to estimate the solar wind speed from the expansion rate of the coronal magnetic field, though the correlation between them may depend on the solar activity cycle. We need further study of correlation analysis for the entire solar cycle to get an accurate empirical equation for the estimation of solar wind speed. If the solar wind speed is estimated successfully by an empirical equation, it can be used as an initial condition of a solar wind model for space weather forecasts.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号