首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
海洋学   3篇
  2020年   1篇
  2018年   1篇
  2016年   1篇
排序方式: 共有3条查询结果,搜索用时 15 毫秒
1
1.
Chemistry climate models of the gas composition of the atmosphere make it possible to simulate both space and time variations in atmospheric trace-gas components (TGCs) and predict their changes. Both verification and improvement of such models on the basis of a comparison with experimental data are of great importance. Data obtained from the 2009–2012 ground-based spectrometric measurements of the total contents (TCs) of a number of TGCs (ozone, HNO3, HCl, and NO2) in the atmosphere over the St. Petersburg region (Petergof station, St. Petersburg State University) have been compared to analogous EMAC model data. Both daily and monthly means of their TCs for this period have been analyzed in detail. The seasonal dependences of the TCs of the gases under study are shown to be adequately reproduced by the EMAC model. At the same time, a number of disagreements (including systematic ones) have been revealed between model and measurement data. Thus, for example, the EMAC model underestimates the TCs of NO2, HCl, and HNO3, when compared to measurement data, on average, by 14, 22, and 35%, respectively. However, the TC of ozone is overestimated by the EMAC model (on average, by 12%) when compared to measurement data. In order to reveal the reasons for such disagreements between simulated and measured data on the TCs of TGCs, it is necessary to continue studies on comparisons of the contents of TGCs in different atmospheric layers.  相似文献   
2.
Izvestiya, Atmospheric and Oceanic Physics - Total column amounts (TCAs) of various climatically important atmospheric gases have been determined in Peterhof for the period between 2009 and 2018....  相似文献   
3.
The results of the first long-term (2009–2017) ground-based spectroscopic measurements of the total content (TC) of a number of freons in Russia are presented. According to measurements in Peterhof, TCs of CFC-11 and CFC-12 decrease at a rate of ~0.6% per year and TC of HCFC-22 grows at a rate of ~2.7% per year, which is in good agreement with independent measurements. The seasonal course of freon TC in the area of St. Petersburg is registered: highs of CFC-11 and CFC-12 are observed in summer and lows are in late winter and spring. For the HCFC-22 TC, the opposite seasonal course is observed, with a maximum in winter and a minimum in summer.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号