首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
  国内免费   1篇
地质学   5篇
  2015年   1篇
  2013年   1篇
  2010年   1篇
  2006年   1篇
  2001年   1篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
Second‐order transgressive–regressive (T–R) cycles, previously recognized using sedimentological criteria in Lower Jurassic hemipelagic deposits from northern Spain, are distinguishable based upon bulk‐rock organic geochemistry [total organic carbon (TOC) and hydrogen index (HI)] and the stable carbon isotope compositions from belemnite rostra. There is a coincidence between regressions and decreasing δ13Cbel, TOC and HI values, and between transgressions and increasing δ13Cbel, TOC and HI values. The δ18O and Mg/Ca records from the belemnite rostra are not always in phase with the T–R cycles. The δ18Obel record reveals, however, a prominent excursion towards higher values within the spinatum Zone that correlates, according to our results, with a regression and with negative shifts in Mg/Ca, δ13Cbel and TOC. On the other hand, an excursion in the δ18Obel towards lower values in the serpentinus Zone also correlates with a peak transgression and with positive shifts in Mg/Ca, δ13Cbel and TOC. These two excursions have been identified in other European regions as geochemical perturbations of the same characteristics. This suggests a link between second‐order relative sea‐level changes and variations in seawater geochemistry that may reflect local and regional palaeoceanographic perturbations in sea‐water temperature, salinity and water circulation during the Early Jurassic. Terra Nova, 18, 233–240, 2006  相似文献   
2.
<正>El Soplao outcrop,an Early Cretaceous amber deposit recently discovered in northern Spain (Cantabria),has been shown to be the largest site of amber with arthropod inclusions that has been found in Spain so far.Relevant data provided herein for biogeochemistry of the amber,palynology,taphonomy and arthropod bioinclusions complement those previously published.This set of data suggests at least two botanical sources for the amber of El Soplao deposit.The first(type A amber)strongly supports a source related to Cheirolepidiaceae,and the second(type B amber)shows non-specific conifer biomarkers.Comparison of molecular composition of type A amber with Frenelopsis leaves(Cheirolepidiaceae)strongly suggests a biochemical affinity and a common botanical origin.A preliminary palynological study indicates a regional high taxonomical diversity,mainly of pteridophyte spores and gymnosperm pollen grains.According to the preliminary palynological data,the region was inhabited by conifer forests adapted to a dry season under a subtropical climate.The abundant charcoalified wood associated with the amber in the same beds is evidence of paleofires that most likely promoted both the resin production and an intensive erosion of the litter,and subsequent great accumulation of amber plus plant cuticles.In addition,for the first time in the fossil record, charcoalified plant fibers as bioinclusions in amber are reported.Other relevant taphonomic data are the exceptional presence of serpulids and bryozoans on the surfaces of some amber pieces indicating both a long exposure on marine or brackish-water and a mixed assemblage of amber.Lastly,new findings of insect bioinclusions,some of them uncommon in the fossil record or showing remarkable adaptations,are reported.In conclusion,a documented scenario for the origin of the El Soplao amber outcrop is provided.  相似文献   
3.
Palaeotemperature estimates from the oxygen‐isotope compositions of belemnites have been hampered by not knowing ancient seawater isotope compositions well enough. We have tackled this problem using Mg/Ca as a proxy for temperature and here, we present a ~2 Ma record of paired Mg/Ca and δ18O measurements of Jurassic (Early Pliensbachian) belemnites from the Asturian basin as a palaeo‐proxy of seawater oxygen‐isotope composition. From the combined use of the two approaches, we suggest a δ18Ow composition of about ?0.1‰ for the Jamesoni–Ibex zones. This value may have been increased by about 0.6‰ during the Davoei Zone due to the effect of waters with a different δ18Ow composition. These findings illustrate the inaccuracy of using a globally homogeneous ice‐free value of δ18Ow = ?1‰ for δ18Ocarb‐based palaeotemperature reconstructions. Our data suggest that previous palaeotemperatures calculated in the region from δ18O values of belemnites may have been underestimated as the seawater oxygen isotopic composition could have been higher.  相似文献   
4.
Stable isotope and trace element analyses of 230 Jurassic (Pliensbachian–Toarcian) samples from northern Spain have been performed to test the use of geochemical variations in fossils (belemnites and brachiopods) and whole‐rock hemipelagic carbonates as palaeoceanographic indicators. Although the succession analysed (Reinosa area, westernmost Basque–Cantabrian Basin) has been subject to severe thermal alteration during burial diagenesis, the samples appear to be well preserved. The degree of diagenetic alteration of the samples has been assessed through the application of integrated petrographic, chemical and cathodoluminescence analyses. It is demonstrated that brachiopods and whole‐rock carbonates, although widely used for palaeoceanic studies, do not retain their primary marine geochemical composition after burial diagenesis. In contrast, there is strong evidence that belemnite rostra preserve original isotopic values despite pervasive diagenesis of the host rock. Well‐preserved belemnite shells (non‐luminescent to slightly luminescent) typically show stable isotope values of +4·3‰ to –0·7‰δ13C, +0·7‰ to –3·2‰δ18O, and trace element contents of <32 μg g–1 Mn, <250 μg g–1 Fe, >950 μg g–1 Sr and Sr/Mn ratios >80. This study suggests that the degree to which diagenesis has affected the preservation of an original isotopic composition may differ for different low‐Mg calcite fossil shells and hemipelagic bulk carbonates, behaviour that should be considered when marine isotopic signatures from other ancient carbonate rocks are investigated. Multiple non‐luminescent contemporaneous belemnite samples passed the petrographic and geochemical tests to be considered as palaeoceanic recorders, yet their δ13C and δ18O values exhibited moderate scatter. Such variability is likely to be related to the palaeoecological behaviour of belemnites and/or high‐frequency secular variations in sea‐water chemistry superimposed on the long‐term isotopic trend. A pronounced positive carbon‐isotope excursion (up to +4·3‰) is documented in the early Toarcian serpentinus biozone, which correlates with the Toarcian δ13C maximum reported in other European and Tethyan regions.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号