首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   8篇
  免费   0篇
地质学   5篇
海洋学   2篇
自然地理   1篇
  2010年   2篇
  2009年   2篇
  2006年   4篇
排序方式: 共有8条查询结果,搜索用时 18 毫秒
1
1.
Sequence stratigraphy of fluvial deposits is a controversial topic because changes in relative sea level will eventually have indirect impact on the spatial and temporal distribution of depositional facies. Changes in the relative sea level may influence the accommodation space in fluvial plains, and hence have impact on types of fluvial system, frequency of avulsion, and style of vertical and lateral accretion. This study aims to investigate whether depositional facies and changes in the fluvial system of the Lower Triassic Petrohan Terrigenous Group sandstones (NW Bulgaria) in response to changes in the relative sea level have an impact on the spatial and temporal distribution of diagenetic alterations.  相似文献   
2.
The distribution of diagenetic alterations in Triassic fluvio-deltaic, quartzarenitic to sublitharenitic, lowstand systems tract (LST) sandstones of the Grès á Voltzia Formation, anastomosing fluvial, quartzarenitic transgressive systems tract (TST) sandstones of the Grès á Roseaux Formation, and shallow marine, quartzarenitic to sublitharenitic, TST sandstones of the Grès Coquiller Formation, the Paris Basin (France), can be linked to transgression and regression events, and thus to the sequence stratigraphic context. Near-surface eogenetic alterations, which display a fairly systematic link to the depositional facies and sequence stratigraphic framework, include: (i) cementation by meteoric water calcite (δ18O=−8.9‰ and δ13C=−9.1‰) in the fluvio-deltaic, LST sandstones, (ii) cementation by mixed marine–meteoric calcite (δ18O=−5.3‰ to −2.6‰ and δ13C=−3.9‰ to −1.3‰) and dolomite (δ18O=−4.6‰ to −2.6‰ and δ13C=−2.9‰ to −2.3‰) in the foreshore, TST sandstones and below parasequence boundaries (PB), and transgressive surface (TS), and in the shoreface, TST sandstones below maximum flooding surfaces (MFS), being facilitated by the presence of carbonate bioclasts, (iii) dissolution of detrital silicates and precipitation of K-feldspar overgrowths and kaolinite, particularly in the fluvio-deltaic, LST sandstones owing to effective meteoric water circulation, and (vi) formation of autochthonous glauconite, which is increases in abundance towards the top of the fluvio-deltaic, LST sandstones, and along TS, and in the shoreface, TST sandstones, by alteration of micas owing to the flux of seawaters into the sandstones during transgression, whereas parautochthonous glauconite is restricted to the TS sandstones owing to marine reworking. Mesogenetic alterations, which include cementation by quartz overgrowths and illite, display fairly systematic link to fluvio-deltaic, LST sandstones. This study has revealed that linking of diagenesis to transgression and regression events enables a better understanding of the parameters that control the spatial and temporal distribution of diagenetic alterations in sandstones and of their impact on reservoir quality evolution.  相似文献   
3.
The spatial and temporal distribution of diagenetic alterations has been constrained in relationship to depositional facies and sequence stratigraphy of the Upper Ordovician glaciogenic quartzarenite sandstones in the Murzuq Basin, SW Libya, which were deposited during the Haritanian glaciation when the basin was laying along the continental margin of Gondwana. Eogenetic alterations encountered include: (i) replacement of detrital silicates, mud matrix and pseudomatrix by kaolinite in paraglacial, tide-dominated deltaic, in foreshore to shoreface (highstand systems tract; HST) and in post-glacial, Gilbert-type deltaic (lowstand systems tract; LST) sandstones, particularly below the sequence boundaries (SB). Kaolinite formation is attributed to the influx of meteoric water during relative sea level fall and basinward shift of the shoreline. (ii) Cementation by calcite (δ18OVPDB = − 3.1‰ to + 1.1‰ and δ13CVPDB = + 1.7‰ to + 3.5‰) and Mg-rich siderite in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, in the glacial, tide-dominated estuarine (transgressive systems tract; TST) sandstones and in the post-glacial, shoreface TST sandstones is interpreted to have occurred from marine pore-waters. (iii) Cementation by Mg-poor siderite, which occurs in the post-glacial, Gilbert-type deltaic LST sandstones and in the paraglacial, tide-dominated deltaic and foreshore to shoreface HST sandstones, is interpreted to have occurred from meteoric waters during relative sea level fall and basinward shift of the shoreline. (iv) Pervasive cementation by iron oxides has occurred in the glacial, shoreface–offshore TST sandstones and post-glacial, shoreface TST sandstones immediately below the maximum flooding surfaces (MFS), which was presumably enhanced by prolonged residence time of the sediments under oxic diagenetic conditions at the seafloor. (v) Formation of grain-coating infiltrated clays mainly in the glacial, fluvial incised-valley LST sandstones and in the post-glacial, Gilbert-type deltaic LST sandstones as well as, less commonly, in the paraglacial, foreshore to shoreface HST sandstones and in the tide-dominated deltaic HST sandstones below the SBs.

Mesogenetic alterations include mainly the formation of abundant quartz overgrowths in the glacial, fluvial incised-valley LST sandstones, post-glacial, Gilbert-type deltaic LST sandstones and glacial, shoreface TST sandstones, in which early carbonate cements are lacking. Illite, chlorite and albitized feldspars, which occur in small amounts, are most common in the glacial, tide-dominated estuarine TST sandstones and paraglacial, shoreface HST sandstones. This study demonstrates that the spatial and temporal distribution of diagenetic alterations and their impact on reservoir-quality evolution in glacial, paraglacial and post-glacial sandstones can be better elucidated when linked to the depositional facies and sequence stratigraphic framework.  相似文献   

4.
The Eocene Hecho Group turbidite system of the Aínsa‐Jaca foreland Basin (southcentral Pyrenees) provides an excellent opportunity to constrain compositional variations within the context of spatial and temporal distribution of source rocks during tectonostratigraphic evolution of foreland basins. The complex tectonic setting necessitated the use of petrographic, geochemical and multivariate statistical techniques to achieve this goal. The turbidite deposits comprise four unconformity‐bounded tectonostratigraphic units (TSU), consisting of quartz‐rich and feldspar‐poor sandstones, calclithites rich in extrabasinal carbonates and hybrid arenites dominated by intrabasinal carbonates. The sandstones occur exclusively in TSU‐2, whereas calclithites and hybrid arenites occur in the overlying TSU‐3, TSU‐4 and TSU‐5. The calclithites were deposited at the base of each TSU and hybrid arenites in the uppermost parts. Extrabasinal carbonate sources were derived from the fold‐and‐thrust belt (mainly Cretaceous and Palaeocene limestones). Conversely, intrabasinal carbonate grains were sourced from foramol shelf carbonate factories. This compositional trend is attributed to alternating episodes of uplift and thrust propagation (siliciclastic and extrabasinal carbonates supplies) and subsequent episodes of development of carbonate platforms supplying intrabasinal detrital grains. The quartz‐rich and feldspar‐poor composition of the sandstones suggests derivation from intensely weathered cratonic basement rocks during the initial fill of the foreland basin. Successive sediments (calclithites and hybrid arenites) were derived from older uplifted basement rocks (feldspar‐rich and, to some extent, rock fragments‐rich sandstones), thrust‐and‐fold belt deposits and from coeval carbonate platforms developed at the basin margins. This study demonstrates that the integration of tectono‐stratigraphy, petrology and geochemistry of arenites provides a powerful tool to constrain the spatial and temporal variation in provenance during the tectonic evolution of foreland basins.  相似文献   
5.
Linking diagenesis to depositional facies and sequence stratigraphy can provide a better understanding of some of the parameters that control the spatial and temporal distribution of diagenetic alterations and of their impact on reservoir quality. A study of the paralic, glaciogenic sandstones of the Melaz Shuqran and Mamunyiat formations (Late Ordovician) of the Murzuq Basin, SW Libya, reveals that the distribution of diagenetic kaolin can be constrained within depositional facies and sequence stratigraphy. Eogenetic kaolinite was formed by the dissolution of unstable detrital grains as a result of influx of meteoric waters into: (i) glacial, fluvial incised-valley lowstand systems tract (LST), glacial, tide-dominated estuarine transgressive systems tract (TST) during formation of overlying sequence boundary, (ii) paraglacial, tide-dominated deltaìc highstand systems tract (HST), paraglacial, foreshore to shoreface HST during progradation and basinward shift of the shoreline and/or formation of overlying sequence boundary, (iii) postglacial, Gilbert-type deltaic LST sandstones during relative sea level fall. On the other hand, formation of kaolinite immediately below maximum flooding surfaces is attributed to dissolution of unstable detrital grains by organic acids that were presumably derived from thermal alterations of organic matter, possibly during mesodiagenesis. The transformation of eogenetic kaolinite into dickite during mesodiagenesis is probably a consequence of low αK+ / αH+ ratio in the pore waters due to the scarcity of detrital K-feldspars.  相似文献   
6.
Elucidation of diagenetic alterations in the Petrohan Terrigenous Group (fluvial; highstand systems tract HST) sandstones and Svidol Formation (tide-dominated deltaic and tidal flat, transgressive systems tract TST and highstand systems tract HST, respectively) sandstones and calcarenite, Lower Triassic, NW Bulgaria was constrained within a sequence stratigraphic framework. Eogenetic alterations in the fluvial HST sandstones include (i) formation of grain-coating infiltrated clays as a result of percolation of mud-rich surface waters into underlying coarse-grained and permeable channel-fills and crevasse splay sandstones; (ii) formation of pseudomatrix by mechanical compaction of mud intraclasts that were incorporated into the coarse-grained channel sandstones during their lateral avulsion; and (iii) cementation by calcite (δ18OVPDB = − 6.5‰ to − 3‰; δ13CVPDB = − 5.1‰ to + 0.6‰) and dolomite (δ18OVPDB = − 6.1‰ to − 0.3‰; δ13CVPDB = − 7.2‰ to − 5.8‰) in the crevasse splay and floodplain sediments. Mesogenetic alterations that are encountered in the fluvial HST sandstones include (i) illitization of grain-coating clays, mud intraclasts, and mica, possibly because of simultaneous albitization of feldspars; (ii) cementation by calcite (δ18OVPDB = − 14.5‰ to − 8.4‰; δ13CVPDB = − 7.7‰ to + 0.6‰) and dolomite (δ18OVPDB = − 15.8‰ to − 5‰; δ13CVPDB = − 7.9‰ to + 1.5‰); and (iii) limited amounts of quartz overgrowths in the channel sandstones owing to occurrence of thick grain-coating clays.

Conversely, the tide-dominated deltaic TST sandstones and the tidal flat HST calcarenite were pervasively cemented by calcite (δ18OVPDB = − 6.6‰ to − 3.1‰; δ13CVPDB = − 5.1‰ to + 0.6‰) and siderite (δ18OVPDB = − 7.2‰ to − 5.7‰; δ13CVPDB = + 0.3‰ to + 0.9‰) particularly below marine and maximum flooding surfaces, due to the presence of abundant bioclasts and prolonged residence time of the sediments under certain geochemical conditions along these surfaces. The remaining open pores were cemented during mesodiagenesis by calcite (δ18OVPDB = − 6.6‰ to − 3.1‰ and δ13CVPDB = − 5.1‰ to + 0.6‰) and dolomite (δ18OVPDB = − 6.6‰ to − 3.1‰ and δ13CVPDB = − 5.1‰ to + 0.6‰).

This study shows that constructing a conceptual model for the distribution of diagenetic alterations is possible by integration of diagenesis with sequence stratigraphy. The model shows that tide-dominated deltaic TST sandstones and tidal flat HST calcarenite were pervasively cemented by carbonates during near-surface eodiagenesis, owing to the presence of abundant bioclasts. Conversely, fluvial LST sandstones remained poorly cemented during near-surface eodiagenesis due to the lack of bioclasts, but were cemented by mesogenetic calcite, dolomite and quartz overgrowths instead.  相似文献   

7.
Meteoric-water flux and formation of kaolinite owing to the dissolution of detrital silicates are common features of continental and paralic sandstones. In deep-water marine sandstones, meteoric-water flux is commonly considered unlikely to occur. However, the study of deep-water, marine sandstones of the Shetland–Faroes Basin on the British continental shelf revealed widespread and extensive dissolution and kaolinitization of mica and feldspar grains, which are attributed to meteoric-water flux during a sea-level lowstand. We suggest that this apparently enigmatic meteoric-water flux mechanism is likely to have occurred by hyperpycnal flow. Hyperpycnal flow occurs when river effluent directly transfers into sediment gravity flow, and enters seawater as a mixture of sediment and fresh water. The likelihood for hyperpycnal flows increases at times when rivers and distributary channels reach the shelf edge, and their flows are delivered directly onto the deepwater slope.  相似文献   
8.
Petrographic examinations and electron microprobe analyses of Proterozoic granitic rocks, SE Sweden aimed to characterize and unravel the mechanisms and conditions of plagioclase alterations. These alterations include saussuritization, albitization and replacement of plagioclase by K‐feldspar. The hydrothermal alterations, which are inferred to have occurred at ca. 250–400°C, resulted in concomitant formation of Al‐rich titanite, epidote, calcite, pumpellyite, prehnite and iron oxides. Replacement of plagioclase by K‐feldspar occurs in red‐stained zones, which have developed close to thin fractures owing to the precipitation of tiny Fe‐oxide pigment particles within the altered plagioclase, whereas saussuritized plagioclase has less systematic spatial relationships to these fractures. Albitization of plagioclase occurred in rocks that are poor in biotite compared to rocks that suffered extensive saussuritization. The chemical and textural characterization of various types of plagioclase alterations allows elucidation of the granitic hydrothermal systems. Features of feldspar alteration in the granitic rocks are similar to those encountered in feldspathic sandstones and should hence be considered in studies on diagenetic changes of siliciclastic successions during basin evolution. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号