首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   32篇
  免费   1篇
大气科学   2篇
地球物理   12篇
地质学   9篇
海洋学   8篇
自然地理   2篇
  2018年   1篇
  2017年   1篇
  2016年   4篇
  2015年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2006年   1篇
  2005年   2篇
  2002年   2篇
  2001年   2篇
  1999年   1篇
  1996年   2篇
  1995年   1篇
  1993年   1篇
  1991年   1篇
  1986年   1篇
排序方式: 共有33条查询结果,搜索用时 15 毫秒
1.
Combining a geological model with a geomechanical model, it generally turns out that the geomechanical model is built from units that are at least a 100 times larger in volume than the units of the geological model. To counter this mismatch in scales, the geological data model's heterogeneous fine-scale Young's moduli and Poisson's ratios have to be “upscaled” to one “equivalent homogeneous” coarse-scale rigidity. This coarse-scale rigidity relates the volume-averaged displacement, strain, stress, and energy to each other, in such a way that the equilibrium equation, Hooke's law, and the energy equation preserve their fine-scale form on the coarse scale. Under the simplifying assumption of spatial periodicity of the heterogeneous fine-scale rigidity, homogenization theory can be applied. However, even then the spatial variability is generally so complex that exact solutions cannot be found. Therefore, numerical approximation methods have to be applied. Here the node-based finite element method for the displacement as primary variable has been used. Three numerical examples showing the upper bound character of this finite element method are presented.  相似文献   
2.
In newly burnt and unburnt pine and eucalyptus forest in Portugal, overland flow and soil losses were monitored to assess the impacts of the following post-fire treatments: application of different quantities of logging litter; rip-ploughing compared with minimum tillage prior to planting eucalyptus seedlings; and clearance of pine needles and vegetation. Eucalyptus logging litter reduced soil losses by up to 95 per cent. The impact of pine logging litter was equivocal, but removal of pine needles increased soil losses elevenfold. Implications for soil longevity, soil quality and land management strategy are discussed.  相似文献   
3.
Recently ocean acidification as a major threat for marine species has moved from a consensus statement into a much discussed and even challenged conception. A simple meta-analysis of Hendriks et al. (2010) showed that based on results of pooled experimental evidence, marine biota may turn out to be more resistant than hitherto believed. Dupont et al. (in press) indicate the importance of evaluating the most vulnerable stages in the life cycle of organisms instead of only adult stages. Here we evaluate additional material, composed of experimental evidence of the effect of ocean acidification on marine organisms during adult, larval, and juvenile stages, and show that the observed effects are within the range predicted by Hendriks et al. (2010). Species-specific differences and a wide variance in the reaction of organisms might obscure patterns of differences between life stages. Future research should be aimed to clarify underlying mechanisms to define the effect ocean acidification will have on marine biodiversity. Conveying scientific evidence along with an open acknowledgment of uncertainties to help separate evidence from judgment should not harm the need to act to mitigate ocean acidification and should pave the road for robust progress in our understanding of how ocean acidification impacts biota of the ocean.  相似文献   
4.
The effects of small fractions ( < 30%) of open water covering a grid element are currently neglected even in atmospheric general circulation models (AGCMs) which incorporate complex land surface parameterization schemes. Here, a method for simulating sub-grid scale open water is proposed which permits any existing land surface model to be modified to account for open water. This new parameterization is tested as an addition to an advanced land surface scheme and, as expected, is shown to produce general increases in the surface latent heat flux at the expense of the surface sensible heat flux. Small changes in temperature are associated with this change in the partitioning of available energy which is driven by an increase in the wetness of the grid element. The sensitivity of the land surface to increasing amounts of open water is dependent upon the type of vegetation represented. Dense vegetation (with a high leaf area index) is shown to complicate the apparently simple model sensitivity and indicates that more advanced methods of incorporating open water into AGCMs need to be considered and compared against the parameterization suggested here. However, the sensitivity of one land surface model to incorporating open water is large enough to warrant consideration of its incorporation into climate models.  相似文献   
5.
The ongoing human-induced emission of carbon dioxide (CO2) threatens to change the earth's climate. One possible way of decreasing CO2 emissions is to apply CO2 removal, which involves recovering of carbon dioxide from energy conversion processes and storing it outside the atmosphere. Since the 1980's, the possibilities for recovering CO2 from thermal power plants received increasing attention.In this study possible techniques of recovering CO2 from large-scale industrial processes are assessed.In some industrial processes, e.g. ammonia production, CO2 is recovered from the process streams to prevent it from interfering with the production process. The CO2 thus recovered can easily be dehydrated and compressed, at low cost. In the iron and steel industry, carbon dioxide can be recovered from blast furnace gas. In the petrochemical industry CO2 can be recovered from flue gases, using low-temperature heat for the separation process.Carbon dioxide can be recovered from large-scale industrial processes and in some cases the cost of recovery is significantly less than CO2 recovery from thermal power plants. Therefore this option should be studied further and should be considered if carbon dioxide removal is introduced on a wide scale.  相似文献   
6.
The water quality of urban drainage ditches in lowlands in the Rhine‐Meuse delta was analysed with principal component analysis (PCA) during a dry period and a rain storm, and related to the seepage of polluted river water and effective impervious area (EIA). This was done in order to test the hypothesis that seepage of river water and storm water runoff from impervious areas strongly determine the water quality of urban drainage systems along large lowland rivers. Our analysis revealed that upward seepage of groundwater originating from rivers Rhine and Meuse was positively correlated with nitrate, potassium, sodium and chloride and negatively correlated with alkalinity, calcium, magnesium and iron. EIA was correlated with very few environmental variables (i.e. phosphate, pH and iron in the dry period and iron during the rain storm). Nickel and zinc concentrations generally exceeded the maximum allowable concentrations (MAC), while lead and phosphorus concentrations were just above the nutrient standards and MAC in a few locations during the rain storm. To optimize water quality in urban water systems, attention should be paid to all sources of pollution and not only to EIA. The impact of local groundwater seepage originating from large rivers in lowlands on the chemistry of urban water systems is often underestimated and should be taken into account when assessing water quality and improving water quality status. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
7.
8.
9.
The Thukela Bank, KwaZulu-Natal, supports a diverse ecosystem and South Africa’s only prawn fishery. Oceanographic studies suggest riverine input is not important for the biology of this system, whereas biological studies suggest the contrary, with prawn catches increasing with increased fluvial run-off. The aim of this study was to determine (i) the importance of riverine and marine organic matter for the Thukela Bank food web; and (ii) whether there are seasonal changes in the Thukela River stable isotope values, and, if so, whether these are reflected in the isotope values of demersal organisms. Estuarine organic matter, sediments and demersal organisms were collected from several sites across the bank in the wet and dry seasons of 2008, 2009 and 2010. Marine particulate organic matter was also collected in 2010 and analysed for δ13C and δ15N, as well as C/N ratios. There were strong seasonal changes in isotopic values of organic matter and fauna, especially faunal δ13C. There was an apparent time-lag in organisms assimilating riverine organic matter isotopic values, with the isotopic signature of demersal organisms reflecting that of riverine organic matter from the previous season, which is likely the result of tissue turnover time. In 2010, Thukela Bank sediment organic matter was of riverine origin and this maintained the demersal food web. We conclude that Thukela River organic matter is an important input to the food web of the Thukela Bank, indicating that any future damming of the catchment area could have serious consequences for this ecosystem.  相似文献   
10.
The bioaccumulation model OMEGA (optimal modelling for ecotoxicological applications) is used to explore accumulation of organotins in the Western Scheldt food chain, consisting of herbi-detritivores, primary and secondary carnivorous fish and a piscivorous bird. Organotins studied are tributyltin (TBT) and triphenyltin (TPT) and the respective di- and mono-organotin metabolites. Empirical elimination rate constants are compared to model predictions for organic substances and metals. It is found that field bioaccumulation ratios are higher than predicted based on elimination kinetics relevant for organic compounds. The results indicate that uptake of organotins mainly occurs via hydrophobic mechanisms, whereas elimination may occur via metal-like kinetics. This results in very low elimination rates, which are comparable to model predictions for metals.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号