首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
测绘学   1篇
海洋学   1篇
  2006年   1篇
  2000年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
A balloon-borne superconducting submillimeter-wave limb-emission sounder (BSMILES) was developed to observe thermal emission lines from stratospheric minor constituents. BSMILES carries a 300-mm-diameter offset parabolic antenna, a 624-639-GHz superconductor-insulator-superconductor (SIS) receiver, a three-axis fiber-optical gyroscope, and an acousto-optical spectrometer. BSMILES was launched from the Pacific Coast of Japan. All systems operated properly and emission line spectra of stratospheric gases, such as O/sub 3/, HCl, HO/sub 2/, and O/sub 3/ isotopes were measured. The system noise temperature in double sideband (DSB) during the flight was less than 460 K over the observing bandwidth with a best value of 330 K that is 11 times as large as the quantum limit (11h/spl nu//k/sub B/). After the observation, the gondola splashed down in the Pacific Ocean and was retrieved. Almost all instruments were waterproofed, and it has been proved that they are reusable.  相似文献   
2.
In order to validate wind vectors derived from the NASA Scatterometer (NSCAT), two NSCAT wind products of different spatial resolutions are compared with observations by buoys and research vessels in the seas around Japan. In general, the NSCAT winds agree well with the wind data from the buoys and vessels. It is shown that the root-mean-square (rms) difference between NSCAT-derived wind speeds and the buoy observations is 1.7 ms–1, which satisfies the mission requirement of accuracy, 2 ms–1. However, the rms difference of wind directions is slightly larger than the mission requirement, 20°. This result does not agree with those of previous studies on validation of the NSCAT-derived wind vectors using buoy observations, and is considered to be due to differences in the buoy observation systems. It is also shown that there are no significant systematic trends of the NSCAT wind speed and direction depending on the wind speed and incidence angle. Comparison with ship winds shows that the NSCAT wind speeds are lower than those observed by the research vessels by about 0.7 ms–1 and this bias is twice as large for data observed by moving ships than by stationary ships. This result suggests that the ship winds may be influenced by errors caused by ship's motion, such as pitching and rolling.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号