首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3篇
  免费   0篇
地球物理   1篇
地质学   1篇
海洋学   1篇
  2022年   1篇
  2020年   1篇
  2006年   1篇
排序方式: 共有3条查询结果,搜索用时 0 毫秒
1
1.
Ocean Dynamics - The present study aims to provide a straightforward analytical solution to wave-current-mud interaction by considering the mean shear stress effects in the water layer. A direct...  相似文献   
2.
China Ocean Engineering - Multiple reflections of the waves between structure and wavemaker in hydraulic flumes could change the frequency content of the desired incident wave or result in...  相似文献   
3.
A calcic copper-bearing skarn zone in East-Azarbaidjan, NW of Iran is located to the east of the Sungun-Chay river. Skarn-type metasomatic alteration and mineralization occurs along the contact between Upper Cretaceous impure carbonates and an Oligo-Miocene Cu-bearing granitoid stock. Both endoskarn and exoskarn are developed along the contact. Exoskarn is the principal skarn zone enclosed by a marmorized and skarnoid–hornfelsic zone. The skarnification process occurred two stages: (1) prograde and (2) retrograde. The prograde stage is temporally and spatially divided into two sub-stages: (a) metamorphic–bimetasomatic (sub-stage I) and (b) prograde metasomatic (sub-stage II). Sub-stage I began immediately after the intrusion of the pluton into the enclosing impure carbonates. Sub-stage II commenced with segregation and evolution of a fluid phase in the pluton and its invasion into fractures and micro-fractures of the marmorized and skarnoid–hornfelsic rocks developed during sub-stage I. The introduction of considerable amounts of Fe, Si and Mg led to the development of substantial amounts of medium- to coarse-grained anhydrous calc-silicates. From texture and mineralogy the retrograde metasomatic stage can be divided into two discrete sub-stages: (a) early (sub-stage III) and (b) late (sub-stage IV). During sub-stage III, the previously formed skarn zones were affected by intense multiple hydro-fracturing phases in the Cu-bearing stock. In addition to Fe, Si and Mg, substantial amounts of Cu, Pb, Zn, along with volatile components such as H2S and CO2 were added to the skarn system. Consequently considerable amounts of hydrous calc-silicates (epidote, tremolite–actinolite), sulfides (pyrite, chalcopyrite, galena, sphalerite, bornite), oxides (magnetite, hematite) and carbonates (calcite, ankerite) replaced the anhydrous calc-silicates. Sub-stage IV was concurrent with the incursion of relatively low temperature, more highly oxidizing fluids into skarn system, bringing about partial alteration of the early-formed calc-silicates and developing a series of very fine-grained aggregates of chlorite, clay, hematite and calcite.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号