首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
地质学   1篇
海洋学   1篇
  2018年   1篇
  2008年   1篇
排序方式: 共有2条查询结果,搜索用时 0 毫秒
1
1.
In the Nile deep-sea turbidite system (NDSTS), the province fed by the Rosetta branch of the Nile delta is characterised by the recurrent activity of gravity processes. Seven mass-transport deposits (MTDs) were recognised from the upper to the mid slope, downstream from imbricated scars (~ 30 km-long, ~ 200 m high) running along the shelf edge nearby the Rosetta canyon. Extending on surfaces between 200 and 5000 km2, with estimated volumes from 3 to 500 km3, these MTDs represent about 40% (up to 90% locally) of the total Pleistocene–Holocene sedimentary thickness. Three types of MTDs can be distinguished on the basis of their scale. Each has also a distinctive internal configuration and distribution within the Rosetta depositional setting. Age estimates of two MTDs point towards relationships between climate and submarine mass failures through sea-level changes, sediment supply, or a combination of both. Additionally, the presence of gas in the sediment and earthquake shaking may have concurred to trigger large-scale failures on the low slope angles (1°–2°) of the Rosetta area.  相似文献   
2.
Contourite drifts are sediment bodies formed by the action of bottom currents. They are common features found on continental slopes and are often affected by slope failure. However, processes controlling slope instability in contourite depositional systems are still not well constrained, and it is not clear whether contourites have particular properties that make them more susceptible to slope failure. In this study, we compare sedimentological and geotechnical properties of contouritic and hemipelagic sediments within the Corsica Trough (northern Tyrrhenian Sea) using geophysical data sets and sediment cores in order to get a better understanding of the controlling factors of slope stability. Geomorphological and slope stability analyses reveal that differences in sediment properties have little influence on the location of submarine landslides, in comparison with the morphology of the drifts. Hence, the steep downslope flanks of plastered drift deposits are the most susceptible zones for local failure initiation. Moreover, as erosion is common at the foot of plastered drifts, undercutting is thought to contribute to the development of large-scale failure up to the point that submarine landslides are triggered.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号