首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
海洋学   5篇
  2002年   1篇
  2001年   1篇
  1998年   1篇
  1997年   2篇
排序方式: 共有5条查询结果,搜索用时 0 毫秒
1
1.
To observe sound penetration into a sandy sediment, a buried acoustic receiving array was insonified by a wide band sound source carried by a remotely operated vehicle. A slanting array design was used to avoid scattering artifacts. This design overcame possible problems in previous experiments, in which scattering artifacts from the array structure could be mistaken for a propagating wave. The experiments took place in a sandy sediment off the West coast of Florida, as part of the sediment acoustics experiment, which is a multidisciplinary effort to study sediment acoustics. A coherent angle, speed, and height estimation process searched through a four-dimensional search space, of source height and elevation angle, wave speed, and propagation delay to find spherical acoustic wave fronts. Three main categories of waves were found: first refracted, dominant nonrefracted and evanescent. Later acoustic arrivals, a fourth category, remain to be analyzed. Their relative intensities effectively characterize the sediment penetrating acoustic energy. The acoustic sound pressure level of penetrating waves below the critical grazing angle was found to be greater than expected for a flat interface.  相似文献   
2.
 Experimental measurements of the bottom backscattering strength from carbonate sediments were made with a 200-kHz multibeam sonar mounted on a remotely operated vehicle. Results were obtained from eight different sites, which may be grouped into three categories, labeled soft, medium and hard, according to measured sediment sound speed. Sediment samples were gathered at or near each site to help interpret the acoustic results. The acoustic results are compared with extant published data and with the BOGGART bottom backscatter model. Backscattering strength values measured in the soft and medium sites fell within the main cluster of previously published values from sediments of similar grain sizes. The values from the hard region fell close to the upper limit. Dependence of the apparent backscattering strength on sonar height above bottom, particularly for the lower values of height above bottom, was observed, which suggests that the scattering process is a multiple-scattering one.  相似文献   
3.
An experiment was performed to measure sediment penetrating acoustic waves to test a model of acoustic propagation, which is based on Biot's theory. Independent geophysical measurements provided model input parameters. A parametric sound source was used to project a narrow beam pulse into a silty sand sediment at a shallow grazing angle. The sediment acoustic waves were measured by an array of buried sensors and processed to measure wave directions and speeds. Two acoustic waves were observed, corresponding to the fast and slow waves predicted by Biot's theory. Discrepancies between model predictions and measured acoustic waves were examined, deficiencies in the model identified, and strategies for improvement postulated. The permeability and bulk modulus of the solid frame were of particular interest  相似文献   
4.
Shallow-water bottom reverberation measurements   总被引:2,自引:0,他引:2  
High-frequency bottom reverberation measurements were made at an experimental site in the Gulf of Mexico. The acoustic data were taken as a function of frequency (40-180 kHz) and grazing angle (40-33°). The measured acoustic reverberation results are compared to predictions made by models developed by Jackson et al. (1986, 1996) and Boyle and Chotiros (1995). The models used inputs from the analysis of sediment cores and stereophotography. The model predictions show differences from each other and from the data. The results show reverberation-level variabilities as a function of frequency that cannot be accurately predicted by these models  相似文献   
5.
An overview of SAX99: acoustic measurements   总被引:5,自引:0,他引:5  
A high-frequency acoustic experiment was performed at a site 2 km from shore on the Florida Panhandle near Fort Walton Beach in water of 18-19 m depth. The goal of the experiment was, for high-frequency acoustic fields (mostly In the 10-300-kHz range), to quantify backscattering from the seafloor sediment, penetration into the sediment, and propagation within the sediment. In addition, spheres and other objects were used to gather data on acoustic detection of buried objects. The high-frequency acoustic interaction with the medium sand sediment was investigated at grazing angles both above and below the critical angle of about 30°. Detailed characterizations of the upper seafloor physical properties were made to aid in quantifying the acoustic interaction with the seafloor. Biological processes within the seabed and the water column were also investigated with the goal of understanding their impact on acoustic properties. This paper summarizes the topics that motivated the experiment, outlines the scope of the measurements done, and presents preliminary acoustics results  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号