首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   84篇
  免费   5篇
  国内免费   4篇
测绘学   2篇
大气科学   5篇
地球物理   22篇
地质学   22篇
海洋学   8篇
天文学   33篇
自然地理   1篇
  2021年   1篇
  2020年   2篇
  2019年   2篇
  2018年   4篇
  2017年   4篇
  2016年   7篇
  2015年   4篇
  2014年   6篇
  2013年   3篇
  2012年   5篇
  2011年   6篇
  2010年   5篇
  2009年   5篇
  2008年   6篇
  2007年   4篇
  2005年   1篇
  2000年   2篇
  1999年   2篇
  1995年   1篇
  1994年   2篇
  1992年   1篇
  1990年   1篇
  1989年   1篇
  1987年   3篇
  1986年   1篇
  1984年   3篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   2篇
  1979年   3篇
  1978年   1篇
  1972年   1篇
排序方式: 共有93条查询结果,搜索用时 15 毫秒
1.
Soil water dynamics are central in linking and regulating natural cycles in ecohydrology, however, mathematical representation of soil water processes in models is challenging given the complexity of these interactions. To assess the impacts of soil water simulation approaches on various model outputs, the Soil and Water Assessment Tool was modified to accommodate an alternative soil water percolation method and tested at two geographically and climatically distinct, instrumented watersheds in the United States. Soil water was evaluated at the site scale via measured observations, and hydrologic and biophysical outputs were analysed at the watershed scale. Results demonstrated an improved Kling–Gupta Efficiency of up to 0.3 and a reduction in percent bias from 5 to 25% at the site scale, when soil water percolation was changed from a threshold, bucket-based approach to an alternative approach based on variable hydraulic conductivity. The primary difference between the approaches was attributed to the ability to simulate soil water content above field capacity for successive days; however, regardless of the approach, a lack of site-specific characterization of soil properties by the soils database at the site scale was found to severely limit the analysis. Differences in approach led to a regime shift in percolation from a few, high magnitude events to frequent, low magnitude events. At the watershed scale, the variable hydraulic conductivity-based approach reduced average annual percolation by 20–50 mm, directly impacting the water balance and subsequently biophysical predictions. For instance, annual denitrification increased by 14–24 kg/ha for the new approach. Overall, the study demonstrates the need for continued efforts to enhance soil water model representation for improving biophysical process simulations.  相似文献   
2.
We present previously unreported depth anomalies in the Arabian Basin, northwest Indian Ocean, to provide constraints on the evolution of the oceanic lithosphere of that basin. The depth anomaly reported in this study was calculated as the difference between the observed depth to oceanic basement (corrected for sediment load) and the calculated depth to oceanic basement of the same age. The results indicate an anomalous depth to basement of oceanic crust in the Arabian Basin in the age bracket of 63–42 Ma, suggesting that subsidence in this basin does not follow the age–depth relationship of normal oceanic crust. The depth anomalies in the basin vary from +501 to −905 m. A negative depth anomaly zone, mapped in the eastern part of the basin near the Laccadive Ridge, indicates that here the basement depth is shallower than predicted. By contrast, a positive depth anomaly zone, mapped in the western part of the basin, indicates a deeper basement depth than expected. We propose that the excess subsidence of basement of the western part of the basin is probably caused by a relatively cold mantle, compared to the nearby eastern part of the basin which is affected by the intense thermal field of the former Reunion hotspot. Here, the rise in oceanic basement is caused by the vertical upwelling of oceanic crust due to convection, followed by a lateral across-axis flow facilitated by the Reunion hotspot at the time of spreading in early Tertiary times. This interpretation is in good agreement with spreading-ridge propagation and ridge-hotspot interaction reported earlier for the basin.  相似文献   
3.
The paper presents the first results on the behaviour of solar quiet-day variations of the geomagnetic field components at Gulmarg. Combining the data from Russian stations in the same longitude belt, the annual average daily variations are calculated which show, in the horizontal component (H), a reversal of phase between Gulmarg and Tashkent. Studying the Sq-variations at Gulmarg separately for the three seasons, the daily variation of H duringd-months is predominantly diurnal in character with the maximum before noon. Duringe-months, and more so inj-months, daily variation of the H field is predominantly semidiurnal in character with minimum around 08–09 hr LT and maximum around 14 hr LT consistently during 1978, 1979 and 1980. These features of the Sq at Gulmarg are suggested to be due to the deformations of the current loops caused by the changing latitude of focus during the course of the day.  相似文献   
4.
The evolutionary process of semi-detached binary systems is examined on the basis of non-conservation of orbital angular momentum. We conclude that the semi-detached binary systems follow Type B evolution.  相似文献   
5.
The identification of runoff contributing areas would provide the ideal focal points for water quality monitoring and Best Management Practice (BMP) implementation. The objective of this study was to use a field‐scale approach to delineate critical runoff source areas and to determine the runoff mechanisms in a pasture hillslope of the Ozark Highlands in the USA. Three adjacent hillslope plots located at the Savoy Experimental Watershed, north‐west Arkansas, were bermed to isolate runoff. Each plot was equipped with paired subsurface saturation and surface runoff sensors, shallow groundwater wells, H‐flumes and rain gauges to quantify runoff mechanisms and rainfall characteristics at continuous 5‐minute intervals. The spatial extent of runoff source areas was determined by incorporating sensor data into a geographic information‐based system and performing geostatistical computations (inverse distance weighting method). Results indicate that both infiltration excess runoff and saturation excess runoff mechanisms occur to varying extents (0–58% for infiltration excess and 0–26% for saturation excess) across the plots. Rainfall events that occurred 1–5 January 2005 are used to illustrate the spatial and temporal dynamics of the critical runoff source areas. The methodology presented can serve as a framework upon which critical runoff source areas can be identified and managed for water quality protection in other watersheds. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Photoelectric and absolute elements of the system RT Per have been determined inU, B, andV filters. It is suggested that the primary star may be surrounded by a gaseous disk.  相似文献   
7.
The Bianchi type-V cosmological model with viscous fluid and creation particle in Brans-Dicke theory has been considered. The present paper deals with Bianchi type-V cosmological model with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We have discussed two types of solutions of the average scale factor for a Bianchi type-V model by using a variation law of Hubble’s parameter, which yields a constant value of the deceleration parameter. The exact solutions to the corresponding field equations are obtained in quadrature form. The solutions to the Einstein field equations are obtained for power law and exponential form. The cosmological parameters have been discussed in detail.  相似文献   
8.
In the present study, analysis of 238U concentration in 40 drinking water samples collected from different locations of Jodhpur, Nagaur, Bikaner and Jhunjhunu districts of Rajasthan, India has been carried out by using high resolution inductively coupled plasma mass spectroscopy (HR-ICP-MS) technique. The water samples were taken from hand pumps and tube wells having depths ranging from 50 to 800 feet. The measured uranium concentration lies in the range from 0.89 to 166.89 μg l-1 with the mean value of 31.72 μg l-1. The measured uranium content in twelve water samples was found to be higher than the safe limit of 30 μg l-1 as recommended by World Health Organization (WHO, 2011) and US Environmental Protection Agency (USEPA, 2011). Radiological risk calculated in the form of annual effective dose estimated from annual uranium intake ranges from 0.66 to 138.63 μSv y-1 with the mean value of 26.28 μSv y-1. The annual effective dose in two drinking water samples was found to be greater than WHO (2004) recommended level of 100 μSv y-1. Chemical risk calculated in the form of lifetime average daily dose (LAAD) estimated from the water samples varies from 0.02 to 4.57 μg kg-1 d-1 with the mean value of 0.87 μg kg-1 d-1. The lifetime average daily dose (LAAD) of ten drinking water samples was found to be greater than WHO (2011) recommended level of 1 μg kg-1 d-1. The corresponding values of hazard quotient of 48% water samples were found to be greater than unity.A good positive correlation of uranium concentration with total dissolved solids (TDS) and conductance has been observed. However no correlation of uranium concentration with pH was observed. The results revels that uranium concentration in drinking water samples of the study area can cause radiological and chemical threat to the inhabitants.  相似文献   
9.
The solutions of Einstein’s equations with cosmological constant (Λ) in the presence of a creation field have been obtained for general class of anisotropic cosmological models. We have obtained the cosmological solutions for two different scenarios of average scale factor. In first case, we have discussed three different types of physically viable cosmological solutions of average scale factor for the general class of Bianchi cosmological models by using a special law for deceleration parameter which is linear in time with a negative slope. In second case, we have discussed another three different forms of cosmological solutions by using the average scale factor in three different scenarios like Intermediate scenario, Logamediate scenario and Emergent scenario. All physical parameters are calculated and discussed in each physical viable cosmological model. We examine the nature of creation field and cosmological constant is dominated the early Universe but they do not survive for long time and finally tends to zero for large cosmic time t. We have also discussed the all energy conditions in each cases.  相似文献   
10.
This paper deals with the general class of Bianchi cosmological models with bulk viscosity and particle creation described by full causal thermodynamics in Brans-Dicke theory. We discuss three types of average scale-factor solutions for the general class of Bianchi cosmological models by using a special law for the deceler- ation parameter which is linear in time with a negative slope. The exact solutions to the corresponding field equations are obtained in quadrature form and solutions to the Einstein field equations are obtained for three different physically viable cosmologies. All the physical parameters are calculated and discussed in each model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号