首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   0篇
大气科学   10篇
地球物理   1篇
地质学   1篇
海洋学   5篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   1篇
  2014年   1篇
  2013年   2篇
  2012年   4篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
排序方式: 共有17条查询结果,搜索用时 15 毫秒
1.
Kang  Yoonja  Kang  Hee-Yoon  Kim  Dongyoung  Lee  Young-Jae  Kim  Tae-Ik  Kang  Chang-Keun 《Ocean Science Journal》2019,54(3):467-486
Ocean Science Journal - Coastal water around the archipelago off southwestern Korea has been bathed in an unprecedented pool of warm water in summer in recent years. Here, we examined phytoplankton...  相似文献   
2.
A number of indices have been employed to describe weather extremes on the basis of climate regimes and public concerns. In this study, we combined these traditional indices into four groups according to whether they relate to warm (Twarm), cold (Tcold), wet (Pwet), or dry (Pdry) extremes. Analysis of the combined indices calculated for the daily temperatures and precipitation at 750 meteorological stations in Korea, China, and Japan for 1960s?C2000s shows increasing trends in Twarm and Pdry events and decreasing trends in Tcold events in recent decades, particularly in the northern part of East Asia. A notable regional variation is an increase in the Pwet events in the Korean Peninsula. We applied the same analysis to a 200-year global climate model simulation for 1900?C2099 using the National Center for Atmospheric Research-Community Climate System Model 3. During the 20th century, the changes in Twarm and Tcold calculated from the model data are largely consistent with those calculated from the observations, especially in northern East Asia. The model projections for the 21st century indicate statistically significant increasing Twarm and decreasing Tcold trends in extreme events over the region. Results obtained from historical archives and model simulations using our combined weather extreme indices suggest that northern East Asia will be subject to increased warm and dry extremes and the Korea Peninsula will experience more wet extremes.  相似文献   
3.
The direct and semi-direct radiative effects of anthropogenic aerosols on the radiative transfer and cloud fields in the Western United States (WUS) according to seasonal aerosol optical depth (AOD) and regional climate are examined using a regional climate model (RCM) in conjunction with the aerosol fields from a GEOS-Chem chemical-transport model (CTM) simulation. The two radiative effects cannot be separated within the experimental design in this study, thus the combined direct- and semi-direct effects are called radiative effects hereafter. The CTM shows that the AOD associated with the anthropogenic aerosols is chiefly due to sulfates with minor contributions from black carbon (BC) and that the AOD of the anthropogenic aerosol varies according to local emissions and the seasonal low-level winds. The RCM-simulated anthropogenic aerosol radiative effects vary according to the characteristics of regional climate, in addition to the AOD. The effects on the top of the atmosphere (TOA) outgoing shortwave radiation (OSRT) range from ?0.2?Wm?2 to ?1?Wm?2. In Northwestern US (NWUS), the maximum and minimum impact of anthropogenic aerosols on OSRT occurs in summer and winter, respectively, following the seasonal AOD. In Arizona-New Mexico (AZNM), the effect of anthropogenic sulfates on OSRT shows a bimodal distribution with winter/summer minima and spring/fall maxima, while the effect of anthropogenic BC shows a single peak in summer. The anthropogenic aerosols affect surface insolation range from ?0.6?Wm?2 to ?2.4?Wm?2, with similar variations found for the effects on OSRT except that the radiative effects of anthropogenic BC over AZNM show a bimodal distribution with spring/fall maxima and summer/winter minima. The radiative effects of anthropogenic sulfates on TOA outgoing longwave radiation (OLR) and the surface downward longwave radiation (DLRS) are notable only in summer and are characterized by strong geographical contrasts; the summer OLR in NWUS (AZNM) is reduced (enhanced) by 0.52?Wm?2 (1.14?Wm?2). The anthropogenic sulfates enhance (reduce) summer DLRS by 0.2?Wm?2 (0.65?Wm?2) in NWUS (AZNM). The anthropogenic BC affect DLRS noticeably only in AZNM during summer. The anthropogenic aerosols affect the cloud water path (CWP) and the radiative transfer noticeably only in summer when convective clouds are dominant. Primarily shortwave-reflecting anthropogenic sulfates decrease and increase CWP in AZNM and NWUS, respectively, however, the shortwave-absorbing anthropogenic BC reduces CWP in both regions. Due to strong feedback via convective clouds, the radiative effects of anthropogenic aerosols on the summer radiation field are more closely correlated with the changes in CWP than the AOD. The radiative effect of the total anthropogenic aerosols is dominated by the anthropogenic sulfates that contribute more than 80% of the total AOD associated with the anthropogenic aerosols.  相似文献   
4.
To evaluate the impact of invading seagrass on biogeochemical processes associated with sulfur cycles, we investigated the geochemical properties and sulfate reduction rates (SRRs) in sediments inhabited by invasive warm affinity Halophila nipponica and indigenous cold affinity Zostera marina. A more positive relationship between SRR and below-ground biomass (BGB) was observed at the H. nipponica bed (SRR = 0.6809 × BGB ? 4.3162, r 2 = 0.9878, p = 0.0006) than at the Z. marina bed (SRR = 0.3470 × BGB ? 4.0341, r 2 = 0.7082, p = 0.0357). These results suggested that SR was more stimulated by the dissolved organic carbon (DOC) exuded from the roots of H. nipponica than by the DOC released from the roots of Z. marina. Despite the enhanced SR in spring-summer, the relatively lower proportion (average, 20%) of acid-volatile sulfur (AVS) in total reduced sulfur and the strong correlation between total oxalate-extractable Fe (Fe(oxal)) and chromium-reducible sulfur (CRS = 0.2321 × total Fe(oxal) + 1.8180, r 2 = 0.3344, p = 0.0076) in the sediments suggested the rapid re-oxidation of sulfide and precipitation of sulfide with Fe. The turnover rate of the AVS at the H. nipponica bed (0.13 day?1) was 2.5 times lower than that at the Z. marina bed (0.33 day?1). Together with lower AVS turnover, the stronger correlation of SRR to BGB in the H. nipponica bed suggests that the extension of H. nipponica resulting from the warming of seawater might provoke more sulfide accumulation in coastal sediments.  相似文献   
5.
Three comprehensive acid deposition models were used to simulate the sulfur concentrations over northeast Asia over the period covering entire year of 2002, and discussed the aggregated uncertainties and discrepancies of the three models. The participating models are from the countries participating in the project of Longrange Transboundary Air Pollutants in Northeast Asia (LTP): China, Japan and Korea. The Eulerian Model-3/CMAQ (by China), Regional Air Quality Model (RAQM, by Japan), and Comprehensive Acid Deposition Model (CADM, by Korea) were employed by each country with common emissions data established by the administrative agencies of China, Japan and Korea. The episodic simulation results between 1 to 15, March 2002 are also presented, during which aircraft measurements were carried out over the Yellow sea. The episodic results show both a wide short-term variability in simulations against measurements, and maximum concentration differences of 3~5 times among the three models, requiring that further attention before confidence among the three models can be claimed for short-term simulations. However, the year-long cumulative simulations showed almost the same general features, with lower aggregated uncertainties between the three models, produced by the long term integration over northeast Asia.  相似文献   
6.
7.
An undescribed species of Tanaidacea was collected from Yokji Harbor in the southern coast of Korea. Hexapleomera yokjidona n. sp. can be distinguished from other species of the genus by the distinguishing features of a uropod with five articles, a pleopod basal article lacking inner seta, a mandible setal row with two setae, maxilliped coxa with two proximal setae, pereonites 1–3 together longer than wide, and pereopods 2–3 propodus with three ventral setae. To prove that H. yokjidona is a new species, detailed morphological characteristics of both genders are described and a comprehensive comparison among the species of the genus is tabulated. Additionally, diagnostic characteristics previously used to identify the species of Hexapleomera are reassessed and upgraded.  相似文献   
8.
A series of coupled atmosphere-ocean-land global climate model (GCM) simulations using the National Center for Atmospheric Research (NCAR) Community Climate System Model 3 (CCSM3) has been performed for the period 1870–2099 at a T85 horizontal resolution following the GCM experimental design suggested in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). First, a hindcast was performed using the atmospheric concentrations of three greenhouse gases (CO2, CH4, N2O) specified annually and globally on the basis of observations for the period 1870–1999. The hindcast results were compared with observations to evaluate the GCM’s reliability in future climate simulations. Second, climate projections for a 100-year period (2000–2099) were made using six scenarios of the atmospheric concentrations of the three greenhouse gases according to the A1FI, A1T, A1B, A2, B1, and B2 emission profiles of the Special Report on Emissions Scenarios. The present CCSM simulations are found to be consistent with IPCC’s AR4 results in the temporal and spatial distributions for both the present-day and future periods. The GCM results were used to examine the changes in extreme temperatures and precipitation in East Asia and Korea. The extreme temperatures were categorized into warm and cold events: the former includes tropical nights, warm days, and heat waves during summer (June–July–August) and the latter includes frost days, cold days, and cold surges during winter (December–January–February). Focusing on Korea, the results predict more frequent heat waves in response to future emissions: the projected percentage changes between the present day and the late 2090s range from 294% to 583% depending on the emission scenario. The projected global warming is predicted to decrease the frequency of cold extreme events; however, the projected changes in cold surge frequency are not statistically significant. Whereas the number of cold surges in the A1FI emission profile decreases from the present-day value by up to 24%, the decrease in the B1 scenario is less than 1%. The frequency and intensity of extreme precipitation events year-round were examined. Both the frequency and the intensity of these events are predicted to increase in the region around Korea. The present results will be helpful for establishing an adaptation strategy for possible climate change nationwide, especially extreme climate events, associated with global warming.  相似文献   
9.
We examine the meteorological responses due to the probable eruption of Mt. Baekdu using an off-line Climate-Chemistry model that is composed of the National Center for Atmospheric Research (NCAR) Climate Atmosphere Model version 3 (CAM3) and a global chemistry transport model (GEOS-Chem). Using the aerosol dataset from the GEOS-Chem driven by GEOS-5 meteorology, experiment and control simulations of the climate model are performed and their meteorological differences between the two simulations are analyzed. The magnitudes of volcanic eruption and column injection height were presumably set to 1/200 of the Mt. Pinatubo eruption and 9 km, respectively. Significant temperature drop in the lower troposphere (850 hPa), which is mainly due to a direct effect of prescribed volcanic aerosols from Mt. Baekdu, has been simulated up to about ?4 K. The upper atmosphere (150 hPa) right above the volcano, however, shows significant warming due to the absorption of the infrared radiation by volcanic aerosols. As a result of the volcanic eruption in the climate model, wave-like patterns are shown in both the geopotential height and horizontal wind. The changes in the lower atmospheric temperature are well associated with the modification of the atmospheric circulation through the hydrostatic balance. In spite of limitations in our current simulations due to several underlying assumptions, our results could give a clue to understanding the meteorological impacts from Mt. Baekdu eruptions that are currently attracting considerable public attention.  相似文献   
10.
Modification of cloud microphysics and cloud albedo by cloud-active aerosol is generally identified and accepted, but the nature and magnitude of aerosol-cloud interactions are vaguely understood and thought to include a myriad of processes that vary regionally and confound the application of simple physical models of cloud-aerosol sensitivity. This paper presents observations demonstrating that cloud top stability through its regulation of mixing and vertical development is one of the critical mechanisms that regulate cloud response to cloud-active aerosol in some cloud systems. Strong above-cloud inversions are shown to buffer marine stratocumulus from the effects of mixing with drier, warmer inversion air. This buffering reduces the variability of the cloud liquid water path (LWP) and enables the clouds to remain nearly adiabatic. While weaker above-cloud inversions in continental stratocumulus promote variability in the LWP and sub-adiabatic LWPs, stronger inversions in marine stratocumulus enables a relatively adiabatic existence that increases the relationship of cloud microphysical alteration to cloud-active aerosol. This study has important implications for Geoengineering in that it demonstrates that cloud systems overlain by strong thermal inversions are more likely to respond predictably to intentional manipulation of the in-cloud concentration of cloud-active aerosol.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号