首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
大气科学   3篇
地球物理   1篇
地质学   13篇
海洋学   3篇
  2012年   2篇
  2009年   2篇
  2007年   1篇
  2006年   2篇
  2003年   1篇
  2001年   2篇
  2000年   1篇
  1998年   1篇
  1997年   1篇
  1996年   4篇
  1991年   1篇
  1974年   1篇
  1964年   1篇
排序方式: 共有20条查询结果,搜索用时 15 毫秒
1.
2.
3.
Successions of Early Eocene coarse-grained turbidites up to 400 m thick fill fault-controlled canyons along the eastern Brazilian continental margin. They form part of a Late Albian to Early Eocene transgressive succession characterized by onlapping, deepening-upward sedimentation. In the Lagoa Parda oil field (Regência Canyon, Espírito Santo Basin) the turbidite facies consist mostly of unstratified conglomerate and sandstone, with interbedded bioturbated mudstone and thin-bedded, stratified sandstone. Within the main Regência Canyon, the coarser grained facies occur within 38 deeply incised channels. The fills are 9 to >50 m thick, 210 to >1050 m wide and >1 km long. The finer grained facies build asymmetrical levees that are higher and thicker on the left side (looking downstream) of their channels, probably as an effect of the Coriolis force (to the left in the Southern Hemisphere). Nine levee successions up to 50 m thick are associated with the 20 youngest channels. The deposits filling the low-sinuosity Lagoa Parda channels record successive channel abandonment through relatively rapid avulsions. Avulsions of unleveed channels took place randomly, but channels with well-developed levees show preferential avulsion to the right (looking downstream), opposite to the direction of preferential levee growth. Lagoa Parda channels can be grouped into three complexes 20–100 m thick. These complexes have an estimated duration of about 140 000 years. It is suggested that control of the development of individual channel complexes was related to variation in sediment supply, in turn probably related to climatic changes. The deposition of each channel complex would have followed an increase in sediment supply into the Regência Canyon through delta/fan-delta and littoral drift systems, which in turn would have responded to phases of higher denudation rates in the high-relief, ancestral coastal ranges of south-eastern Brazil. Overall, the three Lagoa Parda channel complexes form a turbidite succession characterized by channel fills that become narrower, thinner and finer grained upward. These trends were induced mostly by a longer term (>400 000 years) decrease in sediment supply, which in turn resulted from the combined effects of a long-term (second-order) trend of sea-level rise, and the decreasing fault activity at the basin margin and source area.  相似文献   
4.
Spinel-facies mantle xenoliths occur in a diatreme cutting throughthe Neogene Southern Patagonia Plateau at Gobernador Gregores(Santa Cruz Province, Argentina). This plateau is in a back-arcposition with respect to the Chile trench. Xenoliths differin their whole-rock composition from other South America occurrences,having higher CaO/Al2O3 ratios and, in some samples, TiO2 enrichment,whereas the Na2O/Al2O3 variation range is similar. Three assemblagescan be distinguished. Assemblage 1, in anhydrous protogranularlherzolites and harzburgites, contains clinopyroxene with adepleted major and trace element composition, indicating pre-metasomaticdepletion processes. This assemblage fully recrystallized toAssemblage 2 (amphibole ± phlogopite ± Cl-apatite-bearing)during a metasomatic episode. This causes clinopyroxene to acquiregeochemical characteristics often attributed to carbonate-meltmetasomatism. Noticeably, amphibole is markedly enriched inNb (up to 298 ppm), especially when depleted in Ti. A furtherevent, related to decompression during xenolith uplift to thesurface, induces closed-system (perhaps with the exception ofCO2 addition) disequilibrium melting of Assemblage 2, dominantlyof amphibole. It is found in pockets (where amphibole is a residualphase) consisting of Na–Si-rich glass and carbonate (Mg-richcalcite) drops, and in veins originating from the pockets (Assemblage3). Euhedral olivine, clinopyroxene and spinel crystallize onlyin the silicate glass. So do new, euhedral apatite crystalswhen glass is in contact with previous Assemblage 2 apatite.Textural evidence and comparison with experimental work suggestthat silicate glass and carbonates are the result of unmixingof a former homogeneous melt. Because of the different flowrates of carbonate and silicate melt, the xenoliths become enrichedin carbonate, which is found in the veins during their migration.Thus, the high CaO/Al2O3 ratio of whole rocks provides inconclusiveevidence of carbonatite metasomatism. This factor, and otherminor deviations from the expected results of carbonatite metasomatism,lead us to hypothesize an aqueous, Cl-rich fluid, possibly slabderived, as an alternative agent. Amphibole, resulting fromreactive porous flow of this agent in the mantle, could fullyexplain the observed geochemical features, as indicated by estimatesof its partition coefficients. KEY WORDS: carbonated xenoliths; Gobernador Gregores; LAM–ICP-MS; mantle metasomatism; silicate glass  相似文献   
5.
6.
Stromatolitic crusts on stick-like and platy Porites corals forming Messinian reefs in Almería played an important role in supporting and binding the brittle corals. The crusts were previously regarded as probable marine cements. However, their clotted, peloidal, and micritic fabrics are directly comparable with those of stromatolites. They accreted allochthonous grains even on vertical faces, and include bushy fabrics closely comparable with those produced by cyanobacterial calcification. They contain numerous fenestrae, exhibit rapid fabric variation, and locally form micro-columns and laminated domes. Their similarities to peloid micrite crusts in Recent reefs suggest that at least some of these Recent crusts are microbial in origin, even though they have widely been interpreted as marine cements. The sedimentary effects of crust development substantially affected both the morphology and relief of the reefs and the generation of reefal clasts. Binding of the reef-frame in the Pinnacle and Thicket zones in the lower and middle parts of the reef created a rigid margin which shed large (commonly up to 5 m) cuboidal blocks of coral-stromatolite frame. The blocks broke along planes of weakness provided by the vertical Porites sticks and were deposited on the Fore-Reef Slope. In the uppermost parts of the reefs crusts dominate the structure, constituting 80% or more of the rock. Veneers up to 15 cm thick encrust thin irregular Porites plates to create a solid Reef Crest Zone which has not been recognized before. The coral-stromatolite framework is associated with echinoids, crustose corallines and halimedacean algae which, together with the scleractinians, indicate normal marine salinity throughout reef growth.  相似文献   
7.
8.
Pliocene and Pleistocene deposits from Grande‐Terre (Guadeloupe archipelago, French Lesser Antilles) provide a remarkable example of an isolated carbonate system built in an active margin setting, with sedimentation controlled by both rapid sea‐level changes and tectonic movements. Based on new field, sedimentological and palaeontological analyses, these deposits have been organized into four sedimentary sequences (S1 to S4) separated by three subaerial erosion surfaces (SB0, SB1 and SB2). Sequences S1 and S2 (‘Calcaires inférieurs à rhodolithes’) deposited during the Late Zanclean to Early Gelasian (planktonic foraminiferal Zones PL2 to PL5) in low subsidence conditions, on a distally steepened ramp dipping eastward. Red algal‐rich deposits, which dominate the western part of Grande‐Terre, change to planktonic foraminifer‐rich deposits eastward. Vertical movements of tens of metres were responsible for the formation of SB0 and SB1. Sequence S3 (‘Formation volcano‐sédimentaire’, ‘Calcaires supérieurs à rhodolithes’ and ‘Calcaires à Agaricia’) was deposited during the Late Piacenzian to Early Calabrian (Zones PL5 to PT1a) on a distally steepened, red algal‐dominated ramp that changes upward into a homoclinal, coral‐dominated ramp. Deposition of Sequence S3 occurred during a eustatic cycle in quiet tectonic conditions. Its uppermost boundary, the major erosion surface SB2, is related to the Cala1 eustatic sea‐level fall. Finally, Sequence S4 (‘Calcaires à Acropora’) probably formed during the Calabrian, developing as a coral‐dominated platform during a eustatic cycle in quiet tectonic conditions. The final emergence of the island could then have occurred in Late Calabrian times.  相似文献   
9.
The Appinite-Migmatite Complex of Sanabria, NW Iberian Massif, Spain   总被引:1,自引:0,他引:1  
The Sanabria appinitic rocks and host migmatites form an unusual,non-peri-batholithic complex in which all the typical membersof the appinite suite are present. It differs from most appiniticcomplexes in the deeper level of emplacement and the close temporaland spatial association with migmatites. Consequently, manyin situ relationships that resulted from the invasion of maficmagma into a crustal anatectic zone are extremely well preserved.The complex shows unequivocal relations between members of theappinitic suite and between these and migmatites derived byanatexis of a gneissic formation (Ollo de Sapo gneiss). Theserelations point to derivation of monzodiorites and biotite dioritesby hydrous basalt fractionation combined with fluid-assistedmelting of the crustal rocks surrounding the appinitic intrusions.This hydrous basic magma may be derived from an enriched regionof the mantle associated with subduction. Petrogenetic modelshave been tested using a combination of field relations andgeochemical data. Despite the complexity of the processes involved,it is concluded that water played an important role in the petrogenesisof the intermediate and mafic magmas. Reaction between monzodioritemelts and the host migmatites was responsible for the generationof a range of intermediate rocks within the complex. The needfor water to facilitate magma generation in both the mantleand the crust suggests that melting is linked with subduction.This interpretation has important implications because appiniticmagmatism may be considered as indicative of subduction processesinvolved not only in the generation of the mafic end-membersof the suite, but also in the generation of batholiths withwhich the appinitic rocks are spatially and temporally associated. KEY WORDS: appinite; monzodiorite; migmatite; Variscan orogen; Iberian massif  相似文献   
10.
Experimental Constraints on Hercynian Anatexis in the Iberian Massif, Spain   总被引:13,自引:4,他引:9  
We have studied experimentally the melting relationships ofthe Ollo de Sapo gneiss (OSG), an important crustal protolithfor the Iberian leucogranites, of possible volcanoclastic origin.The results of this study are compared with previously determinedPTt paths, allowing us to interpret the mechanisms of meltingand granitoid production during the Hercynian orogenic cycle.Phase relationships determined in fluid-absent experiments indicatethat the OSG is a fertile source for peraluminous leucogranites.The slope of the fluid-absent solidus is strongly controlledby the breakdown of Ms in the presence of Qtz, Pl and Kfs. Thissolidus curve has a positive slope ranging from dP/dT = 30 bar/°Cat low P (<6 kbar) to dP/dT = 70 bar/°C at higher P (6–15kbar). The relationships between the Ms vapour-absent solidusand the PTt metamorphic paths in different sectors of the Iberianmassif have two important implications: (1) melt productivityis strongly favoured at low P; (2) anatexis in the Iberian massifprobably took place by decompression associated with crustalthinning and extension. These results are in agreement withthe relationships between granite production and tectonic deformationphases observed in the Iberian massif. Our results emphasizethat anatexis is a process that is strongly controlled bothby the phase relationships of the crustal protoliths and bythe thermal structure of the continental crust. Consequently,one must be careful when assigning potential crustal protolithsto particular granite associations exclusively on the basisof geochemical comparisons. KEY WORDS: anatexis; Hercynian orogen; Iberian massif  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号