首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   0篇
地质学   4篇
海洋学   7篇
自然地理   5篇
  2019年   1篇
  2016年   2篇
  2015年   1篇
  2014年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
  2005年   1篇
  2003年   1篇
  2002年   1篇
排序方式: 共有16条查询结果,搜索用时 15 毫秒
1.
Core A9-EB2 from the eastern Bransfield Basin, Antarctic Peninsula, consists of pelagic (diatom ooze-clay couplets and bioturbated diatom ooze) and hemipelagic (bioturbated mud) sediments interbedded with turbidites (homogeneous mud and silt–clay couplets). The cyclic and laminated nature of these pelagic sediments represents alternation between the deposition of diatom-rich biogenic sediments and of terrigenous sediments. Sediment properties and geochemical data explain the contrasting lamination, with light layers being finer-grained and relatively rich in total organic carbon and biogenic silica content. Also, the high-resolution magnetic susceptibility (MS) variations highlight distinct features: high MS values coincide with clastic-rich sections and low MS values correspond to biogenic sections. The chronology developed for core A9-EB2 accounts for anomalous ages associated with turbidites and shows a linear sedimentation rate of approximately 87 cm/103 yr, which is supported by an accumulation rate of 80 cm/103 yr calculated from 210Pb activity. The late Holocene records clearly identify Neoglacial events of the Little Ice Age (LIA) and Medieval Warm Period (MWP). Other unexplained climatic events comparable in duration and amplitude to the LIA and MWP events also appear in the MS record, suggesting intrinsically unstable climatic conditions during the late Holocene in the Bransfield Basin of Antarctic Peninsula.  相似文献   
2.
3.
Modern and fossil benthic foraminifera were examined from nine surface sediments and two piston cores along the ~131°W transect in the equatorial Pacific Ocean. This study was conducted to clarify the biotic response of abyssal benthic foraminifera during the last 220 ka to changes in the seasonal extent of the Intertropical Convergence Zone (ITCZ). The abundance of modern benthic foraminifera was high at stations between the equator and 6°N, whereas it was low at stations north of 6°N, which is generally consistent with the latitudinal CaCO3 distribution of surface sediments. The northward increase of Epistominella exigua from the equator to ~6°N is similar to the seasonal variations in chlorophyll-a concentrations in the surface water and ITCZ position along ~131°W. This species was more common at core PC5103 (~6°N) than at core PC5101 (~2°N) after ~130 ka, when the Shannon-Wiener diversity (H’) between the two cores started to diverge. Hence, the presentday latitudinal difference in benthic foraminifera (E. exigua and species diversity) between ~2°N and ~6°N along ~131°W has been generally established since ~130 ka. According to the modern relationship between the seasonality of primary production and seasonal ITCZ variations in the northern margin of the ITCZ, the latitudinal divergence of benthic foraminiferal fauna between ~2°N and ~6°N since ~130 ka appear to have been induced by more distinct variations in the seasonal movement of ITCZ.  相似文献   
4.
Dolomitic concretions in diatomaceous hemipelagic sediments of the Miocene Pohang Basin in the southwestern East Sea (Sea of Japan) preserve distinct signals of two independent sedimentary processes, which controlled the extents of isotopic compositions. Variable δ18O (−9.1‰ to +0.7‰) and high δ13C (+3.1‰ to +17.9‰) values suggest that the concretions formed in the methanogenic zone with alteration of the residual mid-Miocene seawater by volcanogenic sediments. Remarkable δ18O and δ13C values show a strong linear relationship, indicating that distinctly independent depositional processes operated during the formation of the concretions. The degree of methanogenesis was enhanced during rapid hemipelagic sedimentation of organic-rich particles, resulting in higher δ13C values, and the effect of volcaniclastics was diluted, maintaining the original properties of ambient mid-Miocene seawater. In contrast, lower δ18O and 87Sr/86Sr values characterize the effect of volcaniclastic sediments that were transported by intermittent gravity flows and interacted with mid-Miocene seawater. The input of volcaniclastic sediment probably degraded the role of methanogenesis by lowering the contents of organic matter and thereby decreased the δ13C values within the concretions. Isotopic signals recorded within the concretions highlight understanding of the depositional environment and evolution of the pore-water chemistry.  相似文献   
5.
An integrated chemostratigraphic (87Sr/86Sr, δ13C and δ18O) study of benthic foraminifera is presented for a 210 m-thick, intermediate depth (upper/middle bathyal transition), Miocene nannofossil ooze section of Ocean Drilling Program Site 1120, Campbell Plateau off New Zealand. Our results indicate that new 87Sr/86Sr, δ13C and δ18O profiles are wholly consistent with their respective Miocene reference curves. These observations facilitate identification of a total of five reliable chemostratigraphic datums, which are based on the fundamental structural changes in the 87Sr/86Sr curve and paired simultaneous δ13C and δ18O events. The resultant age–depth relationship clearly shows that the Miocene (20–5 Ma) biopelagic sedimentation on the Campbell Plateau was essentially continuous at a moderate to high, linear sedimentation rate (17.5 m/m.y. with an exception of the uppermost 13 m). Our findings do not support the shipboard biostratigraphic age model, which assumes that the critical early–middle Miocene transition was interrupted by a major hiatus (<~3 m.y.). Because of its unique bathymetric setting at a paleowater-depth of ~ 600 m, which is among the shallowest of the coeval isotopically studied deep-sea sections in the South Pacific/Southern Ocean, Site 1120 will serve as a reference section for surveying the evolution of intermediate-water paleoceanography in the Southern Hemisphere across the middle Miocene climatic transition.  相似文献   
6.
A time-series sediment trap was deployed at 1,034 m water depth in the eastern Bransfield Strait for a complete year from December 25, 1998 to December 24, 1999. About 99% of total mass flux was trapped during an austral summer, showing distinct seasonal variation. Biogenic particles (biogenic opal, particulate organic carbon, and calcium carbonate) account for about two thirds of annual total mass flux (49.2 g m-2), among which biogenic opal flux is the most dominant (42% of the total flux). A positive relationship (except January) between biogenic opal and total organic carbon fluxes suggests that these two variables were coupled, due to the surface-water production (mainly diatoms). The relatively low δ13C values of settling particles result from effects on C-fixation processes at low temperature and the high CO2 availability to phytoplankton. The correspondingly low δ15N values are due to intense and steady input of nitrates into surface waters, reflecting an unlikely nitrate isotope fractionation by degree of surface-water production. The δ15N and δ13C values of sinking particles increased from the beginning to the end of a presumed phytoplankton bloom, except for anomalous δ15N values. Krill and the zooplankton fecal pellets, the most important carriers of sinking particles, may have contributed gradually to the increasing δ13C values towards the unproductive period through the biomodification of the δ13C values in the food web, respiring preferentially and selectively12C atoms. Correspondingly, the increasing δ15N values in the intermediate-water trap are likely associated with a switch in source from diatom aggregates to some remains of zooplankton, because organic matter dominated by diatom may be more liable and prone to remineralization, leading to greater isotopic alteration. In particular, the tendency for abnormally high δ15N values in February seems to be enigmatic. A specific species dominancy during the production may be suggested as a possible and speculative reason.  相似文献   
7.
Sediment textural properties and total organic carbon (TOC) contents of three sediment cores from Maxwell Bay, King George Island, West Antarctica, record changes in Holocene glaciomarine sedimentary environments. The lower sedimentary unit is mostly composed of TOC-poor diamictons, indicating advanced coastal glacier margins and rapid iceberg discharge in proximal glaciomarine settings with limited productivity and meltwater supply. Fine-grained, TOC-rich sediments in the upper lithologic unit suggest more open water and warm conditions, leading to enhanced biological productivity due to increased nutrient-rich meltwater supply into the bay. The relationship between TOC and total sulfur (TS) indicates that the additional sulfur within the sediment has not originated from in situ pyrite formation under the reducing condition, but rather may be attributed to the detrital supply of sand-sized pyrite from the hydrothermal-origin, quartz-pyrite rocks widely distributed in King George Island. The evolution of bottom-water hydrography after deglaciation was recorded in the benthic foraminiferal stable-isotopic composition, corroborated by the TOC and lithologic changes. The Ø18O values indicate that bottom-water in Maxwell Bay was probably mixed gradually with intruding 18O-rich seawater from Bransfield Strait. In addition, the Ø13C values reflect a spatial variability in the carbon isotope distribution in Maxwell Bay, depending on marine productivity as well as terrestrial carbon fluxes by meltwater discharge. The distinct lithologic transition, dated to approximately 8000 yr BP (uncorrected) and characterized by textural and geochemical contrasts, highlights the postglacial environmental change by a major coastal glacier retreat in Maxwell Bay.  相似文献   
8.
Park  Yu-Hyeon  Kim  Hyung Jeek  Son  Ju Won  Yoo  Chan Min  Khim  Boo-Keun 《Ocean Science Journal》2019,54(3):487-495
Ocean Science Journal - This study evaluates the application of biomarkerbased temperature proxy data (alkenone with its resultant $$U_{37}^{K'}$$ index and glycerol dialkyl glycerol tetraether...  相似文献   
9.
We investigated responses of shallow-water benthic foraminifera to changes in climate and ocean conditions, using sediment core ASC2 from Aso-kai lagoon, central Japan. Six AMS 14C dates reveal that the studied interval corresponds to sediments deposited from ~AD 700 to 1600. Sulfur content of the bulk sediment and multi-dimensional scaling (MDS) axis 1 of fossil benthic foraminifera indicate that the composition of the benthic foraminifera community was closely related to dissolved oxygen (DO) concentration in the hypolimnion. The sulfur content and MDS axis 1 also revealed two shifts over the 900-year interval. In the first phase (~AD 700–1250), the Shannon–Wiener Index (H′), E (S200), evenness and rank abundance curve (RAC) kurtosis indicate a gradual deterioration in structure of the benthic foraminifera community. In that period, there are statistically significant correlations between the faunal composition (MDS axis 1) and faunal structure [Shannon–Wiener (H′), E (S200), evenness and RAC kurtosis]. In the second phase (~AD 1250–1600), however, faunal composition and structure show no marked correspondence. Instead, abundance of benthic foraminifera fluctuated on a scale of ~200 years. Thus, a shift in the biotic response of benthic foraminifera in Aso-kai lagoon occurred in ca. AD 1250. Gradual deterioration of benthic foraminifera, with taxonomic losses, is consistent with declining DO in the first phase, possibly associated with the increasing influence of the Tsushima Warm Current. The possibility that closure of Aso-kai lagoon and development of the sand bar affected benthic foraminifera cannot, however, be ruled out. No corresponding response was observed in the second phase, during which there was no distinct taxonomic loss. Large variations in abundance, however, were a consequence of strength of the East Asian summer and winter monsoons. The shift in the biotic response of benthic foraminifera in Aso-kai lagoon during the period AD 700–1600 was apparently a result of changes in climate and ocean conditions on the East Asian continental margin.  相似文献   
10.
Biogenic opal content and mass accumulation rate (MAR) at IODP Expedition 323 Site U1343 were found to fluctuate consistently, generally being high under warm conditions and low under cold conditions during the last 2.4 Ma. Continuous wavelet transform analysis of the normalized biogenic opal content indicates that export production in the Bering Sea varied predominantly at 41-ka periodicity before 1.25 Ma, and shifted to 100-ka periodicity at the onset of the Mid-Pleistocene Transition (MPT; 1.25–0.7 Ma). The 100-ka cycles dominated until the Holocene. Export production in the Bering Sea decreased markedly in the Bering Sea two times during the MPT: the first occurred at the beginning of the MPT (1.25 Ma) and the second in the middle of the MPT (0.9 Ma). These decreases coincided with both increases in the relative abundance of sea-ice diatoms and decreases in the warm-water diatom species Neodenticula seminae, indicating that reductions in export production in the Bering Sea during the MPT were associated with climate cooling. Decreases in export production in the Bering Sea during the MPT were most likely associated with the increased influence of polar/Arctic domains on the high-latitude North Pacific.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号