首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
地球物理   1篇
海洋学   5篇
自然地理   1篇
  2014年   1篇
  2013年   1篇
  2007年   2篇
  2006年   2篇
  2000年   1篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
2.
3.
4.
5.
Electrical resistivity of the Earth’s crust is sensitive to a wide range of petrological and physical parameters, and it particularly clearly indicates crustal zones that have been tectonically or thermodynamically disturbed. A complex geological structure of the Alpine nappe system, remnants of older Hercynian units and Neogene block tectonics in Western Slovakia has been a target of recent magnetotelluric investigations which made a new and more precise identification of the crustal structural elements of the Western Carpathians possible. A NW-SE magnetotelluric profile, 150 km long, with 30 broad-band and 3 long-period magnetotelluric sites, was deployed, crossing the major regional tectonic elements listed from the north: Brunia (as a part of the European platform), Outer Carpathian Flysch, Klippen Belt, blocks of Penninic or Oravicum crust, Tatricum and Veporicum. Magnetotelluric models were combined with previous seismic and gravimetric results and jointly interpreted in the final integrated geological model. The magnetotelluric models of geoelectrical structures exhibit strong correlation with the geological structures of the crust in this part of the Western Carpathians. The significant resemblance in geoelectrical and crustal geological structures are highlighted in shallow resistive structures of the covering formations represented by mainly Tertiary sediments and volcanics. Also in the deeper parts of the crust highly resistive and conductive structures are shown, which reflect the original building Hercynian crust, with superposition of granitoids or granitised complexes and lower metamorphosed complexes. Another important typical feature in the construction of the Western Carpathians is the existence of young Neogene steep fault zones exhibited by conductive zones within the whole crust. The most significant fault zones separate individual blocks of the Western Carpathians and the Western Carpathians itself from the European Platform.  相似文献   
6.
Geophysical data and sampling of the Golo Basin (East Corsica margin) provide the opportunity to study mass balance in a single drainage system over the last 130 kyr, by comparing deposited sediments in the sink and the maximum eroded volume in the source using total denudation proxies. Evaluation of the solid sediments deposited offshore and careful integration of uncertainties from the age model and physical properties allow us to constrain three periods of sedimentation during the last climatic cycle. The peak of sedimentation initiated during Marine Isotopic Stage (MIS) 3 (ca. 45 ka) and lasted until late in MIS 2 (ca. 18 ka). This correlates with Mediterranean Sea palaeoclimatic records and the glaciation in high altitude Corsica. The yield of solid sediment into the Golo Basin drops in the observed present day Mediterranean basins (gauging stations), whereas the palaeo‐denudation estimate derived from the sediments over the last glacial period is one to ten times higher than that predicted using cosmogenic or thermochronometer estimates of exhumation. The catchment‐wide denudation rate calculated from deposited solid sediment ranges from 47 to 219 mm kyr?1, which is higher than the estimate from palaeosurface ablation in the proximal part of the source (9–140 mm kyr?1) and lower than the distal, narrow, incised channel of the Golo River (160–475 mm kyr?1). This mismatch raises questions about the investigation of denudation at millennial‐time scale (kyr) and at higher integrating times (Myr) as a reliable tool for determining the effect of climate change on mountain building and on sedimentary basin models.  相似文献   
7.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号