首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   17篇
  免费   1篇
  国内免费   9篇
测绘学   1篇
大气科学   21篇
地球物理   4篇
海洋学   1篇
  2024年   1篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   2篇
  2018年   1篇
  2016年   4篇
  2015年   1篇
  2014年   4篇
  2013年   1篇
  2012年   6篇
  2011年   2篇
  2009年   2篇
排序方式: 共有27条查询结果,搜索用时 0 毫秒
1.
高宏兵  刘斌  蒋薇  唐诗华 《测绘科学》2009,34(3):183-185
运用ArcGIS软件和内置VBA二次开发技术,提出一种土地利用数据中图斑的合并方法。首先按地类等级合并属于同一行政区且相邻的图斑,然后根据本文提出的合并规则合并小图斑到相邻图斑中。实验表明:利用此方法合并图斑,符合数据制作规范、不易出错、速度快等优点。  相似文献   
2.
根据山东荣成沿岸风电机组产生的声波范围选取其中178Hz的峰值声音,声压级控制于(85±5)d B,在实验室水槽中,采用实验生态学方法研究了178Hz声波影响下的刺参(Apostichopus japonicus)幼参的行为反应、耗氧率以及体腔液抗氧化酶(CAT、SOD)浓度的变化。通过平均聚集率的变化比较,发现刺参对178Hz的声波胁迫环境的行为反应敏感;利用空瓶法测得幼参耗氧率显著低于对照组(P0.05);通过测定刺参体腔液免疫活性发现在该频率声波干扰下的刺参CAT活性显著高于对照组(P0.05),而SOD活性于对照组差异不明显(P0.05)。研究结果说明声波对刺参幼参的呼吸和免疫会产生明显影响,可为我国近海刺参养殖和风电发展策略提供参考。  相似文献   
3.
基于土壤湿度和年际增量方法的中国夏季气温预测试验   总被引:3,自引:0,他引:3  
本文利用中国160站月平均气温资料和欧洲中心ERA-Interim逐月再分析表层土壤湿度资料,通过相关分析选取欧亚大陆9个关键区的土壤湿度年际增量作为预测因子,采用变形的典型相关分析(BP-CCA)结合集合典型相关分析(ECC)的方法建立集合预测模型,对我国东部夏季气温年际增量进行预测,进而预测夏季气温。其中,1980—2004年的资料用于历史拟合试验,而2005—2014年的资料用于独立样本预测试验。首先利用BP-CCA方法对9个因子分别建立单因子预测模型,然后采用ECC方法对9个预测因子按照不同的组合方式建立集合预测模型,并且分析预测技巧。结果表明,不同预测因子的组合对我国夏季气温的预测能力不同:勒拿河下游地区、中国黄河以南地区、叶尼塞河下游地区、西西伯利亚平原地区以及印度半岛西北部地区的土壤湿度对华北夏季气温预测效果较好;中国黄河以南地区、叶尼塞河下游地区、印度半岛西北部地区、贝加尔湖东北地区以及贝加尔湖以西地区的土壤湿度对江淮夏季气温有较高预测技巧。所建立的两组集合预测模型均显示了较好的实际预测能力:华北气温预测模型预测气温距平的同号率为8/10,平均均方根误差为3.4%;江淮气温预测模型预测气温距平的同号率为7/10,平均均方根误差为2.7%。并且两组模型预测出的华北和江淮气温的预测评分(PS)均超过80分,而国际上通用的距平相关系数(ACC)均在0.3以上。这说明土壤湿度因子中包含对我国夏季气温有用的预测信号,可以考虑将土壤湿度应用于夏季气温预测业务中。  相似文献   
4.
对通海地震台垂直摆倾斜仪观测资料在宁蒗5.7级地震前出现的异常进行了分析,结果表明通海台倾斜仪在震前出现明显的中期、短临异常,有明显的趋势转折、破年变、矢量反向、速率超二倍均方差等现象。  相似文献   
5.
The temporal-spatial characteristics of the leading mode of winter cloudy day frequency (CDF) across eastern China are revealed via Empirical Orthogonal Function (EOF) analysis of daily cloud cover obtained from 1078 gauge stations in eastern China from 1961 to 2003. We identified the two influence routes of this leading mode, which we used to conduct a physical-motivated empirical model to the seasonal forecast of the winter CDF in eastern China. The results demonstrate that: (1) The first EOF mode of winter CDF explains 59% of the total variance, which is significant and independent of the other modes. This mode primarily demonstrates a homogenous spatial pattern across eastern China with dominating interannual variability. In the positive phase of this mode, a significant lower-level anticyclonic circulation anomaly occurs across the North Pacific. The anomalous southerly wind across the western flank of the anticyclonic could transport water vapor from the tropical ocean to eastern China, resulting in higher CDF. (2) the preceding persistent North Pacific dipole (NPD) pattern during August and September, and lowering of sea level pressure across midlatitude North Atlantic (LPA) from September–November are the two independent drivers for the formation and variation of this mode. The cold SSTA in the western pole of the NPD is advected southward to the tropical western Pacific using the anomalous northerly of the local low-level anomalous cyclone, forming the Bjerknes feedback, which maintains and accelerates the “cold west warm east” zonal SSTA dipole pattern in the tropical Pacific. This tropical Pacific zonal SSTA pattern stimulates zonal convection dipole, which induces a meridional atmospheric teleconnection in the North Pacific. The anomalous North Pacific anticyclones’ southerly is conducive to more CDF in eastern China. The LPA demonstrates the transition of a quasi-stationary Rossby wave train in mid-high latitudes Eurasia from autumn to winter. In winter, the southerly on the west of the barotropic anticyclonic anomaly across Northeast Asia, the terminal of the Rossby wave train, could result in increased CDF in eastern China. (3) Based on these two independent routes of physical mechanisms from both tropics and ex-tropics, a physics-motivated empirical model is conducted, which demonstrates potential independent prediction skill during the ten years of 2004–2013. The results are essential references for operational departments on seasonal prediction. © 2023 Science Press. All rights reserved.  相似文献   
6.
蒋薇  孙国武  陈伯民  项瑛  陶玫 《气象科学》2012,32(S1):24-30
针对汛期延伸期降水预报问题,根据大气低频振荡特性,运用低频天气图预报方法,通过分析关键区低频天气系统(低频气旋和低频反气旋)的活动特征,建立低频系统与强降水过程间的对应关系,通过低频系统的活动特征来预报降水过程。在2011年7—9月江苏省延伸期强降水过程预报试验中,低频天气图预报方法的预报效果较好,且预报时效为10~30 d,可以在延伸期业务预报中加以应用。此外,还运用模式统计降尺度方法预报降水落区,为强降水过程的发生提供背景依据和参考信息,具有一定的实用意义。  相似文献   
7.
项瑛  巩庆  艾文文  蒋薇  程婷 《气象科学》2020,40(2):180-190
利用1961—2016年江苏省70个站点的逐日降水资料和暴雨定义,分析了江苏省半个世纪以来暴雨发生的年代际时空变化特征,并分析了不同分布型El Nino发展年份对江苏省夏季降水和暴雨的影响特征。结果表明江苏省暴雨主要集中在6—8月,暴雨日数占全年的73.6%,尤其又以7月为最多;暴雨总的分布特点为苏北多于苏南,淮北西北部及苏南东部最少;江苏暴雨发生频次具有明显的年代际变化,且各地区暴雨的年代际变化有一定差异,频发期为1960s、1990s至今,尤其是1990s以来,全省暴雨增多趋势明显,且2011年之后雨带明显南移;东部型El Nino发展年份较中部型El Nino年份的环流形势更有利于导致江苏夏季降水偏多,尤其是沿江苏南地区与常年同期均值有显著性差异。  相似文献   
8.
选取南京地区1961年1月1日至2012年12月31日逐日地面气象观测资料,采用“黄金分割法”计算体感温度,分析南京地区近52年舒适度特征;选取2005年1月1日至2008年12月31日逐日循环系统疾病死亡人数资料和同期气象资料,分析南京市2005-2008年舒适度和体感温度特征及其与循环系统疾病死亡人数的关系。结果表明,1961-2012年南京市热不舒适期、舒适期日数呈现上升趋势,而冷不舒适期日数呈显著减少趋势,变化率为-3.2 d/10a;4月上旬至5月中旬和10月为舒适期;体感温度在20世纪中期之后表现为明显的上升趋势,增加率为0.3℃/10a;2005-2008年舒适度以微冷和舒适为主;死亡高峰日多出现在冷不舒适日,2008年初死亡高峰日持续时间较长,且与天气灾害过程发生时间存在7~9 d的滞后。  相似文献   
9.
基于土壤湿度和年际增量方法的我国夏季降水预测试验   总被引:1,自引:0,他引:1  
选取欧亚大陆9个关键区的土壤湿度年际增量作为预测因子,采用变形的典型相关分析(BP-CCA)结合集合典型相关分析(ECC)方法建立集合预测模型,对我国东部夏季降水的年际增量进行预测,进而预测夏季降水。其中,1980~2004年的资料用于历史预测试验,而2005~2014年的资料用于独立样本预测试验。首先利用BP-CCA方法对9个因子分别建立单因子预测模型,然后采用ECC方法对9个预测因子按照不同的组合方式建立集合预测模型,并且对独立样本检验的效果进行了评估。结果表明,不同预测因子的组合对我国夏季降水均表现出一定的预测能力:东欧平原、贝加尔湖以北、我国河套地区及长江以南地区的土壤湿度对华北夏季降水预测效果较好;而巴尔喀什湖以北地区、我国西北地区、河套地区以及长江以南地区的土壤湿度对江淮夏季降水有较好预测效果;东欧平原、巴尔喀什湖以北地区以及我国河套地区的土壤湿度对华南降水预测技巧较高。这三组模型预测出的降水变化趋势与相应区域的观测结果较为一致,且预测评分(PS)均超过70分,距平相关系数(ACC)均为正值。研究表明土壤湿度因子中包含了对我国夏季降水有用的预测信号,可以考虑将土壤湿度应用于夏季降水的预测业务中。  相似文献   
10.
针对汛期延伸期降水预报问题,根据大气低频振荡特性,运用低频天气图预报方法,通过分析关键区低频天气系统(低频气旋和低频反气旋)的活动特征,建立低频系统与强降水过程间的对应关系,通过低频系统的活动特征来预报降水过程.在2011年7-9月江苏省延伸期强降水过程预报试验中,低频天气图预报方法的预报效果较好,且预报时效为10 ~30 d,可以在延伸期业务预报中加以应用.此外,还运用模式统计降尺度方法预报降水落区,为强降水过程的发生提供背景依据和参考信息,具有一定的实用意义.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号