首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4篇
  免费   0篇
海洋学   1篇
综合类   3篇
  2018年   3篇
  2014年   1篇
排序方式: 共有4条查询结果,搜索用时 15 毫秒
1
1.
Cobetia marina is a model proteobacteria in researches on marine biofouling. Its taxonomic nomenclature has been revised many times over the past few decades. ~To better understand the role of the surface-associated lifestyle of C. marina and the phylogeny of the family Halomonadaceae, we sequenced the entire genome of C. marina JCM 21022 ~T using single molecule real-time sequencing technology(SMR~T) and performed comparative genomics and phylogenomics analyses. ~The circular chromosome was 4 176 300 bp with an average GC content of 62.44% and contained 3 611 predicted coding sequences, 72 t RNA genes, and 21 r RNA genes. ~The C. marina JCM 21022 ~T genome contained a set of crucial genes involved in surface colonization processes. ~The comparative genome analysis indicated the significant diff erences between C. marina JCM 21022 ~T and Cobetia amphilecti KMM 296(formerly named C. marina KMM 296) resulted from sequence insertions or deletions and chromosomal recombination. Despite these diff erences, pan and core genome analysis showed similar gene functions between the two strains. ~The phylogenomic study of the family Halomonadaceae is reported here for the first time. We found that the relationships were well resolved among every genera tested, including Chromohalobacter, Halomonas, Cobetia, Kushneria, Zymobacter, and Halotalea.  相似文献   
2.
Bangiales is the only order of the Bangiophyceae and has been suggested to be monophyletic. This order contains approximately 190 species and is distributed worldwide. Previous molecular studies have produced robust phylogenies among the red algae, but the divergence times, historical biogeography and evolutionary rates of Bangiales have rarely been studied. Phylogenetic relationships within the Bangiales were examined using the concatenated gene sets from all available organellar genomes. This analysis has revealed the topology((( Bangia, Porphyra) Pyropia) Wildemania). Molecular dating indicates that Bangiales diversifi ed approximately 246.40 million years ago(95% highest posterior density(HPD)= 194.78–318.24 Ma, posterior probability(PP)=0.99) in the Late Permian and Early Triassic, and that the ancestral species most likely originated from eastern Gondwanaland(currently New Zealand and Australia) and subsequently began to spread and evolve worldwide. Based on pairwise comparisons, we found a slower rate of nucleotide substitutions and lower rates of diversifi cation in Bangiales relative to Florideophyceae. Compared with Viridiplantae(green algae and land plants), the evolutionary rates of Bangiales and other Rhodophyte groups were found to be dramatically faster, by more than 3-fold for plastid genome(ptDNA) and 15-fold for mitochondrial genome(mtDNA). In addition, an average 2.5-fold lower dN/dS was found for the algae than for the land plants, which indicates purifying selection of the algae.  相似文献   
3.
Pyropia species grow in the intertidal zone and are cold-water adapted. To date, most of the information about the whole plastid and mitochondrial genomes(ptDNA and mtDNA) of this genus is limited to Northern Hemisphere species. Here, we report the sequencing of the ptDNA and mtDNA of the Antarctic red alga Pyropia endiviifolia using the Illumina platform. The plastid genome(195 784 bp, 33.28% GC content) contains 210 protein-coding genes, 37 tRNA genes and 6 rRNA genes. The mitochondrial genome(34 603 bp, 30.5% GC content) contains 26 protein-coding genes, 25 tRNA genes and 2 rRNA genes. Our results suggest that the organellar genomes of Py. endiviifolia have a compact organization. Although the collinearity of these genomes is conserved compared with other Pyropia species, the genome sizes show significant differences, mainly because of the different copy numbers of rDNA operons in the pt DNA and group II introns in the mtDNA. The other Pyropia species have 2–3 distinct intronic ORFs in their cox 1 genes, but Py. endiviifolia has no introns in its cox 1 gene. This has led to a smaller mtDNA than in other Pyropia species. The phylogenetic relationships within Pyropia were examined using concatenated gene sets from most of the available organellar genomes with both the maximum likelihood and Bayesian methods. The analysis revealed a sister taxa affiliation between the Antarctic species Py. endiviifolia and the North American species Py. kanakaensis.  相似文献   
4.
探索优化研磨条斑紫菜叶状体提取DNA的条件,建立一套简单、快速、高效的高通量研磨破碎方法。钢珠研磨80s时的破碎效果与液氮研磨破碎效果相近,因此选用80s作为研磨时间。利用2种样品材料(干燥和新鲜)、4种研磨介质(钢珠Φ2.3mm、陶瓷珠Φ1mm、石英砂0.270~0.707mm和玻璃珠Φ0.5mm)、3个研磨介质体积梯度(0.1、0.2和0.3mL)设计研磨实验。结果发现,钢珠的破碎效果最好,玻璃珠的破碎效果最差;石英砂和玻璃珠组研磨干燥材料所得DNA完整性最好,4种研磨介质研磨新鲜材料所得DNA出现了降解,钢珠和陶瓷珠研磨干燥材料所得DNA降解最严重;研磨介质的体积对样品的破碎程度、DNA得率和DNA质量没有显著性影响;4种研磨介质研磨干燥和新鲜材料所提DNA的纯度均较高。80s的研磨实验中显示,钢珠组能有效的破碎干燥和新鲜材料,获得DNA的纯度和得率都比较高,但是DNA出现了降解。在此基础上设置了0.2mL钢珠研磨干燥和新鲜材料5~40s的时间梯度。实验结果显示,钢珠在5~40s时均能有效的破碎干燥、新鲜2种样品材料。干燥材料研磨5~40s时,DNA有明显的主条带,DNA得率随着研磨时间的延长有所增加,DNA质量较好,且能用于限制性内切酶酶切实验;新鲜材料研磨5~40s时,DNA有明显的主条带,DNA得率没有显著性差异,DNA质量较好,也能用于限制性内切酶酶切实验。所以本文认为破碎干燥和新鲜2种样品材料制备高质量条斑紫菜DNA的最佳条件为:研磨介质为0.2mL钢珠、研磨速度为6 800r/min、研磨时间为5s。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号