首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   0篇
地质学   1篇
  2019年   1篇
排序方式: 共有1条查询结果,搜索用时 0 毫秒
1
1.
Popov  M. V.  Andrianov  A. S.  Burgin  M. S.  Zuga  V. A.  Rudnitskii  A. G.  Smirnova  T. V.  Soglasnov  V. A.  Fadeev  E. N. 《Astronomy Reports》2019,63(5):391-403

Very Long Baseline Interferometry (VLBI) observations of the pulsar B0833–45 have been carried out as part of the scientific program of the RadioAstron mission. Ground support was provided by the Long Baseline Array, which includes radio telescopes in Australia and other countries in the southern hemisphere. The VLBI observations of the pulsar are analyzed in order to derive the parameters characterizing the scattering of the pulsar radio emission: the angular size of the scattering disk, the spatial scale of the diffraction pattern, the drift velocity of this pattern relative to the observer, the pulse scattering time scale, and the characteristic scintillation time and frequency scales, as well as the index of the electrondensity fluctuation spectrum. Comparison of these values with the predictions of the theory of scattering on a thin screen enables the determination of the position of the effective screen along the line of sight. Estimates made using various methods give distances to the screen from the observer of 0.79 to 0.87 times the total distance to the pulsar. Although the position of the screen is beyond the boundary of the Vela supernova remnant, this object may play the dominant role in the scattering. The scattering disk is an ellipse with a 2:1 axis ratio and with the inferred position angle of the major axis being ≈ 50°, based on the changes in the visibility-function amplitude for various orientations of the projected baseline. This conclusion is supported by the shape of the visibility-function amplitude as a function of the delay.

  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号