首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   153篇
  免费   0篇
地球物理   2篇
地质学   149篇
海洋学   2篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   9篇
  2018年   10篇
  2017年   7篇
  2016年   6篇
  2015年   2篇
  2014年   7篇
  2013年   10篇
  2012年   8篇
  2011年   12篇
  2010年   19篇
  2009年   9篇
  2008年   10篇
  2007年   24篇
  2006年   14篇
  2004年   1篇
排序方式: 共有153条查询结果,搜索用时 15 毫秒
1.
2.
3.
4.
The bimodal volcanoplutonic (basalt-peralkaline rhyolite with peralkaline granites) association of the Noen and Tost ranges was formed 318 Ma ago in the Gobi-Tien Shan rift zone of the Late Paleozoic-Early Mesozoic central Asian rift system, the development of which was related to the movement of the continental lithosphere over a mantle hot spot. A specific feature of the Late Paleozoic rifting was that it occurred within the Middle-Late Paleozoic active continental margin of the northern Asian paleocontinent. Continental margin magmatism was followed after a short time delay by the magmatism of the Gobi-Tien Shan rift zone, which was located directly in the margin of the paleocontinent. Such a geodynamic setting of the rift zone was reflected in the geochemical characteristics of rift-related rocks. The distribution of major elements and compatible trace elements in the rift-related basic and intermediate rocks corresponds to a crystallization differentiation series. The distribution of incompatible trace elements suggests contributions from several sources. This is also supported by the heterogeneity of Sr and Nd isotopic compositions of the rift-related basaltoids: εNd(T) ranges from 4.4 to 6.7, and (87Sr/86Sr)0, from 0.70360 to 0.70427. The geochemical characteristics of the rift-related basaltoids of the Noen and Tost ranges are not typical of rift settings (negative anomalies in Nb and Ta and positive anomalies in K and Pb) and suggest a significant role of the rocks of a metasomatized mantle wedge in their source. In addition, there are high-titanium rocks among the rift-related basaltoids, whose geochemical characteristics approach those of the basalts of mid-ocean ridges and ocean islands. This allowed us to conclude that the compositional variations of the rift-related basaltoids of the Noen and Tost ranges were controlled by three magma sources: the enriched mantle, depleted mantle (high-titanium basaltoids), and metasomatized mantle wedge (medium-Ti basaltoids). The medium-titanium basaltoids were formed in equilibrium with spinel peridotites, whereas the high-titanium magmas were formed at deeper levels both in the spinel and garnet zones. It terms of geodynamics, the occurrence of three sources of the rift-related basaltoids of the Noen and Tost ranges was related to the ascent of a mantle plume with enriched geochemical characteristics beneath a continental margin, where its influence caused melting in the overlying depleted mantle and the metasomatized mantle wedge. The formation of rift-related andesites in the Noen and Tost ranges was explained by the contamination of mantle-derived basaltoid melts with sialic (mainly sedimentary) continental crustal materials or the assimilation of anatectic granitoid melts.  相似文献   
5.
The available geological, geochronological and isotopic data on the felsic magmatic and related rocks from South Siberia, Transbaikalia and Mongolia are summarized to improve our understanding of the mechanisms and processes of the Phanerozoic crustal growth in the Central Asian mobile belt (CAMB). The following isotope provinces have been recognised: ‘Precambrian’ (TDM=3.3–2.9 and 2.5–0.9 Ga) at the microcontinental blocks, ‘Caledonian’ (TDM=1.1–0.55 Ga), ‘Hercynian’ (TDM=0.8–0.5 Ma) and ‘Indosinian’ (TDM=0.3 Ga) that coincide with coeval tectonic zones and formed at 570–475, 420–320 and 310–220 Ma. Continental crust of the microcontinents is underlain by, or intermixed with, ‘juvenile’ crust as evidenced by its isotopic heterogeneity. The continental crust of the Caledonian, Hercynian and Indosinian provinces is isotopically homogeneous and was produced from respective juvenile sources with addition of old crustal material in the island arcs or active continental margin environments. The crustal growth in the CAMB had episodic character and important crust-forming events took place in the Phanerozoic. Formation of the CAMB was connected with break up of the Rodinia supercontinent in consequence of creation of the South-Pacific hot superplume. Intraplate magmatism preceding and accompanying permanently other magmatic activity in the CAMB was caused by influence of the long-term South-Pacific plume or the Asian plume damping since the Devonian.  相似文献   
6.
Data on the composition, inner structure, and age of volcanic and siliceous-terrigenous complexes and granitoids occurring in association with them in the Caledonian Lake zone in Central Asia are discussed in the context of major relations and trends in the growth of the Caledonian continental crust in the Central Asian Foldbelt (CAFB). The folded structures of the Lake zone host basalt, basalt-andesite, and andesite complexes of volcanic rocks that were formed in distinct geodynamic environments. The volcanic rocks of the basalt complex are noted for high concentrations of TiO2 and alkalis, occur in association with fine-grained siliceous siltstone and siliceous-carbonate rocks, are thus close to oceanic-island complexes, and were likely formed in relation to a mantle hotspot activity far away from erosion regions supplying terrigenous material. The rocks of the basalt-andesite and andesite complexes have lower TiO2 concentrations and moderate concentrations of alkalis and contain rock-forming amphibole. These rocks are accompanied by rudaceous terrigenous sediments, which suggests their origin in island-arc environments, including arcs with a significantly dissected topography. These complexes are accompanied by siliceous-terrigenous sedimentary sequences whose inner structure is close to those of sediments in accretionary wedges. The folded Caledonides of the Lake zone passed through the following evolutionary phases. The island arcs started to develop at 570 Ma, their evolution was associated with the emplacement of layered gabbroids and tonalitetrondhjemite massifs, and continued until the onset of accretion at 515–480 Ma. The accretion was accompanied by the emplacement of large massifs of the tonalite-granodiorite-plagiogranite series. The postaccretionary evolutionary phase at 470–440 Ma of the Caledonides was marked by intrusive subalkaline and alkaline magmatism. The Caledonides are characterized by within-plate magmatic activity throughout their whole evolutionary history, a fact explained by the accretion of Vendian-Cambrian oceanic structures (island arcs, oceanic islands, and back-arc basins) above a mantle hotspot. Indicators of within-plate magmatic activity are subalkaline high-Ti basalts, alkaline-ultrabasic complexes with carbonatites and massifs of subalkaline and alkaline gabbroids, nepheline syenites, alkaline granites, subalkaline granites, and granosyenites. The mantle hotspot likely continued to affect the character of the lithospheric magmatism even after the Caledonian folded terrane was formed.  相似文献   
7.
The paper reports results of the analysis of the spatial distribution of modern (younger than 2 Ma) volcanism in the Earth’s northern hemisphere and relations between this volcanism and the evolution of the North Pangaea modern supercontinent and with the spatial distribution of hotspots of the Earth’s mantle. Products of modern volcanism occur in the Earth’s northern hemisphere in Eurasia, North America, Greenland, in the Atlantic Ocean, Arctic, Africa, and the Pacific Ocean. As anywhere worldwide, volcanism in the northern hemisphere of the Earth occurs as (a) volcanism of mid-oceanic ridges (MOR), (b) subduction-related volcanism in island arcs and active continental margins (IA and ACM), (c) volcanism in continental collision (CC) zones, and (d) within-plate (WP) volcanism, which is related to mantle hotspots, continental rifts, and intercontinental belts. These types of volcanic areas are fairly often neighboring, and then mixed volcanic areas occur with the persistent participation of WP volcanism. Correspondingly, modern volcanism in the Earth’s northern hemisphere is of both oceanic and continental nature. The latter is obviously related to the evolution of the North Pangaea modern supercontinent, because it results from the Meso-Cenozoic evolution of Wegener’s Late Paleozoic Pangaea. North Pangaea in the Cenozoic comprises Eurasia, North and South America, India, and Africa and has, similar to other supercontinents, large sizes and a predominantly continental crust. The geodynamic setting and modern volcanism of North Pangaea are controlled by two differently acting processes: the subduction of lithospheric slabs from the Pacific Ocean, India, and the Arabia, a process leading to the consolidation of North Pangaea, and the spreading of oceanic plates on the side of the Atlantic Ocean, a process that “wedges” the supercontinent, modifies its morphology (compared to that of Wegener’s Pangaea), and results in the intervention of the Atlantic geodynamic regime into the Arctic. The long-lasting (for >200 Ma) preservation of tectonic stability and the supercontinental status of North Pangaea are controlled by subduction processes along its boundaries according to the predominant global compression environment. The long-lasting and stable subduction of lithospheric slabs beneath Eurasia and North America not only facilitated active IA + ACM volcanism but also resulted in the accumulation of cold lithospheric material in the deep mantle of the region. The latter replaced the hot mantle and forced this material toward the margins of the supercontinent; this material then ascended in the form of mantle plumes (which served as sources of WP basite magmas), which are diverging branches of global mantle convection, and ascending flows of subordinate convective systems at the convergent boundaries of plates. Subduction processes (compressional environments) likely suppressed the activity of mantle plumes, which acted in the northern polar region of the Earth (including the Siberian trap magmatism) starting at the latest Triassic until nowadays and periodically ascended to the Earth’s surface and gave rise to WP volcanism. Starting at the breakup time of Wegener’s Pangaea, which began with the opening of the central Atlantic and systematically propagated toward the Arctic, marine basins were formed in the place of the Arctic Ocean. However, the development of the oceanic crust (Eurasian basin) took place in the latter as late as the Cenozoic. Before the appearance of the Gakkel Ridge and, perhaps, also the oceanic portion of the Amerasian basin, this young ocean is thought to have been a typical basin developing in the central part of supercontinents. Wegener’s Pangaea broke up under the effect of mantle plumes that developed during their systematic propagation to the north and south of the Central Atlantic toward the North Pole. These mantle plumes were formed in relation with the development of global and local mantle convection systems, when hot deep mantle material was forced upward by cold subducted slabs, which descended down to the core-mantle boundary. The plume (WP) magmatism of Eurasia and North America was associated with surface collision- or subduction-related magmatism and, in the Atlantic and Arctic, also with surface spreading-related magmatism (tholeiite basalts).  相似文献   
8.
Based on study of the Middle Paleozoic (Hercynian) structures of the Central Asian Fold Belt located in Southwest Mongolia, the problem of the sources of juvenile crust growth registered in the Pb isotope composition of postaccretional granitoids is considered. Our study shows that the Pb isotope system of Late Paleozoic granitoids from the Hercynides of the Central Asian Fold Belt provides evidence for the juvenile nature of the continental crust in this region. The evolution of the Pb isotope composition in the Hercynides of Mongolia corresponds to the model parameter μ = 9.25, according to the Stacey–Kramers twostage model. The juvenile source of the Hercynian crust should be characterized by a lower μ value. In addition, according to the Stacey–Kramers two-stage model, the Th/U value in this crust is 3.58.  相似文献   
9.
Data on mineral-hosted melt, fluid, and crystalline inclusions were used to study the composition and evolution of melts that produced rocks of Changbaishan Tianchi volcano, China–North Korea, and estimate their crystallization parameters. The melts crystallized within broad ranges of temperature (1220–700°C) and pressure (3100–1000 bar), at a drastic change in the redox potential: Δ log \(f_{O_2}\) from NNO + 0.92 to +1.42 for the basalt melts, NNO –1.61 to –2.09 for the trachybasaltic andesite melts, NNO –2.63 to –1.89 for the comendite melts, and NNO –1.55 to –3.15 for the pantellerite melts. The paper reports estimates of the compositions of melts that produced the continuous rock series from trachybasalt to comendite and pantellerite. In terms of trace-element concentrations, all of the mafic melts are comparable with OIB magmas. The silicic melts are strongly enriched in trace elements and REE. The most strongly enriched melts contain concentrations of certain elements almost as high as in ores of these elements. The paper reports data on H2O concentrations in melts of different composition. It is demonstrated that the variations in the H2O concentrations were controlled by magma degassing. Data are reported on the Sr and Nd composition of the rocks. The deviations in the Sr isotopic composition are proportional to the 87Sr/86Sr ratio and could be produced in a melt with a high enough 87Sr/86Sr ratio during a geologically fairly brief time period. The evolution of melts that produced rocks of the volcano was controlled by crystallization differentiation of the parental basalt magmas at insignificant involvement of melt mixing and liquid immiscibility of silicate and sulfide melts. The alkaline salic rocks were generated in shallow-sitting (13–3.5 km) magmatic chambers in which the melts underwent profound differentiation that gave rise to pantellerites and comendites strongly enriched in trace elements (Th, Nb, Ta, Zr, and REE). Data on the composition of the magmas and parameters of their derivation are used to develop a generalized petrologic–geodynamic model for the origin of Changbaishan Tianchi volcano.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号