首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20篇
  免费   0篇
  国内免费   2篇
地球物理   1篇
地质学   20篇
海洋学   1篇
  2019年   1篇
  2017年   2篇
  2013年   2篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   1篇
  2006年   2篇
  2001年   3篇
  2000年   1篇
  1996年   1篇
  1995年   1篇
  1992年   2篇
排序方式: 共有22条查询结果,搜索用时 15 毫秒
1.
Ultrahelvetic units of the Eastern Alps were deposited on the distal European continental margin of the (Alpine) Tethys. The Rehkogelgraben section (“Buntmergelserie”, Ultrahelvetic unit, Upper Austria) comprises a 5 m thick succession of upper Cenomanian marl-limestone cycles overlain by a black shale interval composed of three black shale layers and carbonate-free claystones, followed by lower Turonian white to light grey marly limestones with thin marl layers. The main biostratigraphic events in the section are the last occurrence of Rotalipora and the first occurrences of Helvetoglobotruncana helvetica and Quadrum gartneri. The thickest black shale horizon has a TOC content of about 5%, with predominantly marine organic matter of kerogen type II. Vitrinite reflectance and Rock-Eval parameter Tmax (<424 °C) indicate low maturity. HI values range from 261 to 362 mg HC/g TOC. δ13C values of bulk rock carbonates display the well documented positive shift around the black shale interval, allowing correlation of the Rehkogelgraben section with other sections such as the Global Boundary Stratotype Section and Point (GSSP) succession at Pueblo, USA, and reference sections at Eastbourne, UK, and Gubbio, Italy. Sediment accumulation rates at Rehkogelgraben (average 2.5 mm/ka) are significantly lower than those at Pueblo and Eastbourne.  相似文献   
2.
The Miocene intramontane Fohnsdorf-Seckau Basin is situated at the junction of the sinistral Mur-Mürz-fault system and the dextral Pöls-Lavanttal fault system. The basin comprises a 2,400-m-thick coal-bearing fluviodeltaic-lacustrine succession (Lower to Middle Miocene, Upper Karpatian?/Lower Badenian) which is overlain by a 1,000-m-thick alluvio-deltaic conglomeratic succession (Apfelberg Formation, ?Middle/Upper Badenian) in the south. A three-stage model for the basin evolution has been reconstructed from structural analysis and basin fill geometries. During a first pull-apart phase, subsidence occurred along ENE-trending, sinistral strike-slip faults of the Mur-Mürz fault system and NE-SW to N-S-trending normal faults, forming a composite pull-apart basin between overstepping en-echelon strike-slip faults. The Seckau and Fohnsdorf sub-basins are considered as two adjacent pull-aparts which merged into one basin. During the second phase, N-S to NNW-SSE extension and normal faulting along the southern basin margin fault formed a half-graben, filled by wedge-shaped alluvial strata (Apfelberg Formation). During the third phase, after the end of basin sedimentation, the dextral Pöls-Lavanttal fault system reshaped the western basin margin into a positive flower structure.  相似文献   
3.
This study focuses on the detailed provenance evolution of young, syn- to post-orogenic extensional grabens in orogens like the Himalaya to trace the tectonic history of such late-stage basins, using the Neogene Thakkhola-Mustang Graben as a case study. The graben is situated within the Tibetan-Tethys zone and is filled with > 870 m of continental deposits of Miocene to Holocene age-. Based on logged sections within the predominantly alluvial to coarse-grained fluvial fill of the graben we investigated paleocurrent data and the petrology of sandstones and conglomerates including heavy minerals studies to interpret provenance and source areas in detail. Significant changes are recorded by slight differences in heavy mineral and pebble compositions.The sandstones can be classified as lithic greywackes, lithic arkoses and feldspathic litharenites. Sandstone, mudstone, quartzite and some granite clasts are dominant in conglomerates of the central part of the graben. Tetang Formation conglomerates of Miocene age comprise mostly clasts of Mesozoic rocks with an eastern provenance, consistent with measured paleocurrent directions. All paleocurrent data and compositional analyses of imbricated conglomerates of the Miocene–Pliocene Thakkhola Formation in the northeast of the graben suggest that clasts were derived from eastern source areas comprising mainly Mesozoic rocks whereas Paleozoic clasts of a western to northern source area predominate in the centre of the graben.Heavy mineral analysis indicates that tourmaline, staurolite, zircon, garnet and apatite constitute a significant proportion of the assemblages of all formations through time whereas epidote, andalusite, kyanite, chloritoid, hornblende, chrome-spinel, rutile and amphiboles are less common. These assemblages reflect in general stable minerals and low to high-grade metamorphic source rocks, and are principally controlled by reworking of older, passive margin sediments of the Tibetan-Tethys zone as indicated by provenance discrimination diagrams.Three successive stages in provenance evolution were recognized: (1) The Miocene Tetang Formation, characterized by higher kyanite values, corresponding to the Himalayan foreland evolution; (2) the Thakkhola Formation, characterized by granite clasts and significantly higher amounts of andalusite, indicating source area expansion and erosion of the Mustang-Mugu granites to the northwest; (3) the Upper Pleistocene/Holocene Kaligandaki Formation, bearing higher amounts of epidote/klinozoisite and ophiolite and high-pressure/low temperature detritus as indicated by chrome spinel and blue amphiboles, derived from the north-lying Indus-Tsangpo suture zone. The change in source areas from the Miocene/Pliocene to the Late Pleistocene/Holocene is interpreted as a result of the evolution from an initial stage of high-angle normal faulting and collapse basin formation to a low-angle extensional detachment basin system.  相似文献   
4.
Chemistry of detrital garnets, chrome spinels and tourmalines of 30 selected samples in combination with the general heavy mineral distribution from 523 sandstone samples of the Upper Cretaceous to Eocene Gosau Group of the eastern part of the Eastern Alps and the western West Carpathians result in an advanced picture of sedimentary provenance and palaeogeographic evolution of that area. Garnets from Coniacian to Campanian sediments are partly derived from a metamorphic sole remnant of Neotethys ophiolites to the south. Tectonically high ophiolitic nappes, later on completely eroded, supplied mainly the paleogeographically southern Grünbach and Glinzendorf Gosau basins with ultramafic detritus, represented by chrome spinels of a mixed harzburgite/lherzolite composition, whereas no direct indications for a northern ophiolitic source, the Penninic accretionary wedge to the north of the Gosau basins, could be found. In the younger part of the Gosau basins fill, from the Maastrichtian to the Eocene, only almandine-rich garnets could be observed suggesting a southern provenance from low-grade metamorphic metapelites of exhuming Austroalpine metamorphic complexes. Ophiolite detritus is reduced in the Maastrichtian and disappears in the Paleogene.  相似文献   
5.
The Late Cretaceous Brezová and Myjava Groups of the Western Carpathians in Slovakia and formations of the Gosau Group of the Northern Calcareous Alps in Lower Austria comprise similar successions of alluvial/shallow marine deposits overlain by deep water hemipelagic sediments and turbidites. In both areas the heavy mineral spectra of Late Cretaceous sediments contain significant amounts of detrital chrome spinel. In the Early Tertiary the amount of garnet increases. Cluster analysis and correspondence analysis of Coniacian/Santonian and Campanian/Early Maastrichtian heavy mineral data indicate strong similarities between the Gosau deposits of the Lunz Nappe of the north-eastern part of the Northern Calcareous Alps and the Brezova Group of the Western Carpathians. Similar source areas and a similar palaeogeographical position at the northern active margin of the Adriatic/Austroalpine plate are therefore suggested for the two tectonic units.Basin subsidence mechanisms within the Late Cretaceous of the Northern Calcareous Alps are correlated with the Western Carpathians. Subsidence during the Campanian-Maastrichtian is interpreted as a consequence of subduction tectonic erosion along the active northern margin of the Adriatic/Austroalpine plate. Analogous facies and heavy mineral associations from deep water sandstones of the Manin Unit and the Klape Unit indicate accretion of parts of the Pieniny Klippen Belt during the Late Cretaceous along the Adriatic/Austroalpine margin.  相似文献   
6.
In the Rhenodanubian Flysch Zone of Austria, between the Aptian–Albian “Gault Flysch” and the Cenomanian–Turonian Reiselsberg Formation, an interval with predominant red shales (“Untere Bunte Schiefer”) occurs. In the Oberaschau section near Attersee (Upper Austria) a ca. 18-m-thick interval of alternating red and grey shales and marlstones with minor sandstones is present. Thin sandstone intercalations are interpreted as distal turbidites. Dinoflagellate cyst assemblages indicate the Litosphaeridium siphoniphorum Zone. The concurrent presence of Litosphaeridium siphoniphorum and Ovoidinium verrucosum in all samples allows a correlation to the lower part of this zone, thus defining a Late Albian–Early Cenomanian age. Based on foraminifera, the red beds can be assigned to the topmost Rotalipora appenninica Zone and the Rotalipora globotruncanoides Zone due to the presence of small morphotypes of the index taxa. Nannofossils indicate standard zones CC9/UC0 throughout the red interval, defined by the first occurrence of Eiffellithus turriseiffelii, and UC1 above the red shales. Based on these multistratigraphic data, a latest Albian–Early Cenomanian age can be inferred.  相似文献   
7.
The Late Aptian to Early Cenomanian Tannheim–Losenstein basin constitutes an early, deep-marine piggyback trough which formed on the Cretaceous orogenic wedge of the Eastern Alps. The narrow basin extended over more than 400 km from the western part of the Northern Calcareous Alps into the Western Carpathians (Slovakia), as suggested by similarities in stratigraphy – e.g. the common coarsening upward succession of marls, sandstones, and conglomerates – and by similarities in timing of deformation and the uniform composition, e.g. similar heavy mineral assemblages. The coarsening-upward succession resulted from the progradation of a coarse-grained slope apron into a hemipelagic basin. The composition of detrital material constitutes evidence for a uniform source area to the north, along the entire length of the basin, comprising continental basement, Mesozoic sediments and remnants of ophiolites. The basin formation marked the onset of compression along the northern Austroalpine plate boundary.  相似文献   
8.
High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.  相似文献   
9.
The scientific borehole Baden-Sooss penetrates a succession of Badenian (Langhian, Middle Miocene) sediments at the type locality of the Badenian, the old brickyard Baden-Sooss in the Vienna Basin. The sedimentary succession of the 102-m-cored interval consists of more than 95% bioturbated, medium-to-dark gray marly shales with carbonate contents between 11 and 25% and organic carbon contents between 0.35 and 0.65%. Biostratigraphic investigations on foraminifera (mainly lower part of Upper Lagenid Zone) and calcareous nannoplankton (standard zone NN5) indicate an early Badenian (Langhian) age. Cycles in carbonate content, organic carbon content, and magnetic susceptibility have been identified by power spectra analysis. Correlations between the three variables are extremely significant. Using cross-correlation, periods around 40 m correlate significantly with the 100 kyr−1 eccentricity cycle, the ∼20 m periods with the obliquity cycle, and the 15 to 11-m periods with both precession cycles. Wavelet transformation and decomposition of composite periodic functions were used to obtain the position of the cycle peaks in the profile. Cross-correlation with orbital cycles (La2004) dates the Baden-Sooss core between −14.379 ± 1 and −14.142 my ± 9 kyr.  相似文献   
10.
Flysch and pelagic sedimentation of the Penninic and Austroalpine tectonic units of the Eastern Alps are results of the closure of the Tethyan-Vardar and the Ligurian-Piemontais Oceans as well as of the progressive deformation of the Austroalpine continental margin. The Austroalpine sequences are characterized by Lower Cretaceous pelagic limestones or minor carbonate flysch and various siliciclastic mid- and Upper Cretaceous flysch formations. Chrome spinel is the most characteristic heavy mineral delivered by the southern Vardar suture, the northern obduction belt at the South Penninic-Austroalpine margin and its continuation into the Klippen belt sensu lato of the Carpathians. The South Penninic sequences, e.g. the Arosa zone, the Ybbsitz Klippen zone and some flysch nappes also contain chrome spinel, whereas the sediments of the North Penninic Rhenodanubian flysch zone are characterized by stable minerals and garnet.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号