首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
测绘学   1篇
地球物理   3篇
地质学   14篇
自然地理   1篇
  2020年   1篇
  2011年   4篇
  2010年   1篇
  2008年   4篇
  2007年   2篇
  2006年   3篇
  2004年   1篇
  2002年   3篇
排序方式: 共有19条查询结果,搜索用时 15 毫秒
1.
We use the evolution of river sediment characteristics and sedimentary Corg from the Himalayan range to the delta to study the transport of Corg in the Ganga-Brahmaputra system and especially its fate during floodplain transit.A detailed characterisation of both mineral and organic particles for a sampling set of river sediments allows taking into account the sediment heterogeneity characteristic of such large rivers. We study the relationships between sediment characteristics (mineralogy, grain size, specific area) and Corg content in order to evaluate the controls on Corg loading. Contributions of C3 and C4 plants are estimated from Corg stable isotopic composition (δ13Corg). We use the evolution of δ13Corg values from the Himalayan range to the delta in order to study the fate of Corg during floodplain transit.Ganga and Brahmaputra sediments define two distinct linear relations with specific area. In spite of 4-5 times higher specific area, Ganga sediments have similar Corg content, grain size and mineralogy as Brahmaputra sediments, indicating that specific area does not exert a primary control on Corg loading. The general correlation between the total Corg content and Al/Si ratio indicates that Corg loading is mainly related to: (1) segregation of organic particles under hydrodynamic forces in the river, and (2) the ability of mineral particles to form organo-mineral aggregates.Bed and suspended sediments have distinct δ13Corg values. In bed sediments, δ13Corg values are compatible with a dominant proportion of fossil Corg derived from Himalayan rocks erosion. Suspended sediments from Himalayan tributaries at the outflow of the range have low δ13Corg values (−24.8‰ average) indicating a dominant proportion of C3 plant inputs. In the Brahmaputra basin, δ13Corg values of suspended sediments are constant along the river course in the plain. On the contrary, suspended sediments of the Ganga in Bangladesh have higher δ13Corg values (−22.4‰ to −20.0‰), consistent with a significant contribution of C4 plant derived from the floodplain. Our data indicate that, during the plain transit, more than 50% of the recent biogenic Corg coming from the Himalaya is oxidised and replaced by floodplain Corg. This renewal process likely occurs during successive deposition-erosion cycles and river course avulsions in the plain.  相似文献   
2.
This contribution aims to report the reflections we had with the scientific community during two international workshops on reference materials for stable isotopes in Davos (2002) and Nice (2003). After evaluating the isotopic homogeneity of some existing reference materials, based on either certificates, literature data or specific inter-laboratory rounds, we confirm these as primary reference materials or propose new ones relative to which stable isotope compositions should be reported. We propose DSM-3 for Mg, NIST SRM 915a for Ca, L-SVEC for Li and NBS28 for Si. Cadmium does not yet have a well identified delta zero material, although three commercial mono-elemental Cd solutions have yielded the same isotopic composition relative to one another. In order to scale the linearity of any mass spectrometer, some secondary reference materials are also proposed: Cambridge-1 solution for Mg, the "Münster-Cd" and JEPPIM Cd solutions for Cd and the "Big Batch" silicate for Si. The team from Nancy propose to prepare a mixed spike solution for Li isotopes. Well-characterised natural samples such as ocean or continental waters, diatoms, sponges, rocks and minerals are needed to validate the entire analytical procedure, particularly to take into account the effect of sample mineralisation and of chemical manipulations for elemental separation prior to analysis.  相似文献   
3.
An 18 million year record of the Ca isotopic composition (δ44/42Ca) of planktonic foraminiferans from ODP site 925, in the Atlantic, on the Ceara Rise, provides the opportunity for critical analysis of Ca isotope-based reconstructions of the Ca cycle. δ44/42Ca in this record averages +0.37 ± 0.05 (1σ SD) and ranges from +0.21‰ to +0.52‰. The record is a good match to previously published Neogene Ca isotope records based on foraminiferans, but is not similar to the record based on bulk carbonates, which has values that are as much as 0.25‰ lower. Bulk carbonate and planktonic foraminiferans from core tops differ slightly in their δ44/42Ca (i.e., by 0.06 ± 0.06‰ (n = 5)), while the difference between bulk carbonate and foraminiferan values further back in time is markedly larger, leaving open the question of the cause of the difference. Modeling the global Ca cycle from downcore variations in δ44/42Ca by assuming fixed values for the isotopic composition of weathering inputs (δ44/42Caw) and for isotope fractionation associated with the production of carbonate sediments (Δsed) results in unrealistically large variations in the total mass of Ca2+ in the oceans over the Neogene. Alternatively, variations of ±0.05‰ in the Ca isotope composition of weathering inputs or in the extent of fractionation of Ca isotopes during calcareous sediment formation could entirely account for variations in the Ca isotopic composition of marine carbonates. Ca isotope fractionation during continental weathering, such as has been recently observed, could easily result in variations in δ44/42Caw of a few tenths of permil. Likewise a difference in the fractionation factors associated with aragonite versus calcite formation could drive shifts in Δsed of tenths of permil with shifts in the relative output of calcite and aragonite from the ocean. Until better constraints on variations in δ44/42Caw and Δsed have been established, modeling the Ca2+ content of seawater from Ca isotope curves should be approached cautiously.  相似文献   
4.
The determination of total organic carbon content and composition in detrital sediments requires careful removal of their carbonate minerals. In detrital sediments containing large amounts of carbonates, including dolomite, this can only be achieved by liquid acid leaching that may solubilise a significant proportion of the organic carbon. For a set of detrital sediments from the Himalayan system and the Amazon River as well as five geological reference materials, we determined the proportion of organic carbon (Corg) solubilised during acid leaching. This proportion is significant for all analysed sediments and generally tends to increase with the organic carbon content. Compared to other types of sediments analysed, clay fractions extracted from river sediments and bed sediments with very low organic carbon content have high and low proportions of acid soluble Corg respectively. In Himalayan and Amazon river sediments, the proportion of Corg solubilised during acid leaching was relatively constant with average values of 14 and 19 % respectively. Thus, it is possible to correct the Corg content for the dissolved organic carbon content measured after decarbonation. Data presented here show that Corg dissolved during liquid acid leaching must be taken into account. After careful calibration, the method presented here should, therefore, be applied to any carbonate-rich detrital sediment.  相似文献   
5.
In rivers draining the Himalaya-Tibetan-Plateau region, the 26Mg/24Mg ratio has a range of 2‰ and the 44Ca/42Ca ratio has a range of 0.6‰. The average δ26Mg values of tributaries from each of the main lithotectonic units (Tethyan Sedimentary Series (TSS), High Himalayan Crystalline Series (HHCS) and Lesser Himalayan Series (LHS)) are within 2 standard deviation analytical uncertainty (0.14‰). The consistency of average riverine δ26Mg values is in contrast to the main rock types (limestone, dolostone and silicate) which range in their average δ26Mg values by more than 2‰. Tributaries draining the dolostones of the LHS differ in their values compared to tributaries from the TSS and HHCS. The chemistry of these river waters is strongly influenced by dolostone (solute Mg/Ca close to unity) and both δ26Mg (−1.31‰) and (0.64‰) values are within analytical uncertainty of the LHS dolostone. These are the most elevated values in rivers and rock reported so far demonstrating that both riverine and bedrock values may show greater variability than previously thought.Although rivers draining TSS limestone have the lowest values at −1.41 and 0.42‰, respectively, both are offset to higher values compared to bedrock TSS limestone. The average δ26Mg value of rivers draining mainly silicate rock of the HHCS is −1.25‰, lower by 0.63‰ than the average silicate rock. These differences are consistent with a fractionation of δ26Mg values during silicate weathering. Given that the proportion of Mg exported from the Himalaya as solute Mg is small, the difference in 26Mg/24Mg ratios between silicate rock and solute Mg reflects the 26Mg/24Mg isotopic fractionation factor () between silicate and dissolved Mg during incongruent silicate weathering. The value of of 0.99937 implies that in the TSS, solute Mg is primarily derived from silicate weathering, whereas the source of Ca is overwhelmingly derived from carbonate weathering. The average value in HHCS rivers is within uncertainty of silicate rock at 0.39‰. The widespread hot springs of the High Himalaya have an average δ26Mg value of −0.46‰ and an average value of 0.5‰, distinct from riverine values for δ26Mg but similar to riverine values. Although rivers draining each major rock type have and δ26Mg values in part inherited from bedrock, there is no correlation with proxies for carbonate or silicate lithology such as Na/Ca ratios, suggesting that Ca and Mg are in part recycled. However, in spite of the vast contrast in vegetation density between the arid Tibetan Plateau and the tropical Lesser Himalaya, the isotopic fractionation factor for Ca and Mg between solute and rocks are not systematically different suggesting that vegetation may only recycle a small amount of Ca and Mg in these catchments.The discrepancy between solute and solid Ca and Mg isotope ratios in these rivers from diverse weathering environments highlight our lack of understanding concerning the origin and subsequent path of Ca and Mg, bound as minerals in rock, and released as cations in rivers. The fractionation of Ca and Mg isotope ratios may prove useful for tracing mechanisms of chemical alteration. Ca isotope ratios of solute riverine Ca show a greater variability than previously acknowledged. The variability of Ca isotope ratios in modern rivers will need to be better quantified and accounted for in future models of global Ca cycling, if past variations in oceanic Ca isotope ratios are to be of use in constraining the past carbon cycle.  相似文献   
6.
Airborne radar technology has traditionally been largely devoted to military applications. In recent years, applications in telecommunications, oil exploration and agriculture have proved that radar technology can also be used commercially. This paper focuses on an application of airborne radar technology in the insurance industry and describes the development of a large-scale flood risk assessment model for the River Thames. The model is based upon airborne Synthetic Aperture Radar (SAR) data and was built with commonly used Geographic Information Systems (GIS) and image processing tools. From the Orthorectified Images (ORIs) a land cover map was produced, from which a surface roughness map could be derived. A Digital Elevation Model (DEM) was processed to remove trees and other soft barriers and obtain the effective ground level. This was achieved by using standard GIS processes. The methodology may be applicable to any organisation exposed to flood risk.  相似文献   
7.
This study is concerned with the radioactivity and mineralogy of the younger granites and pegmatites in the Wadi Haleifiya area, southeastern Sinai Peninsula, Egypt. The area is occupied by metasediments, migmatites, older and younger granites. Most of these rocks, especially granites, are dissected by mafic and felsic dykes as well as pegmatites. The younger granites are represented by three main varieties: monzogranites, syenogranites and alkali feldspar granites. The monzogranite consists essentially of quartz, plagioclase, potash feldspar and biotite with minor musco-vite. Iron oxide, titanite, zircon and allanite are the main accessory minerals. Syenogranite is massive, medium- to coarse-grained and commonly exhibits equigranular and hypidiomorphic textures. It is made up essentially of potash feldspar, quartz, plagioclase and biotite. Iron oxides, allanite, epidote, titanite, and zircon are accessory minerals. The alkali feldspar granite consists mainly of perthite, quartz, alkali amphibole (arfvedsonite and riebekite), biotite, sub-ordinate plagioclase and aegirine. Iron oxide, zircon and apatite are accessory minerals, whereas chlorite and sas-surite are secondary minerals. The altered monzogranite and pegmatite recorded high radioelement contents. The eU reaches up to 120 (av.=82×10-6) in the altered monzogranite and up to 55 (av.=27×10-6) in the pegmatites. The high radioactivity in the altered monzogranite is due to the presence of thorite, uranothorite and metamict zircon. In the pegmatites, it is re-lated to the presence of uranophane, uranothorite, thorite, zircon, samarskite, monazite, xenotime, magnetite, ilmen-ite, hematite and rutile.  相似文献   
8.
Clay mineral assemblages of the Neogene Himalayan foreland basin are studied to decipher their significance with respect to tectonic and climate processes. Fluvial deposits of the Siwalik Group (west‐central Nepal), and sediment of the Ganga River drainage system were analysed for clay mineralogy. The observed clay mineral assemblages are mainly composed of illite (dominant), chlorite, smectite and kaolinite. Illite and chlorite are chiefly of detrital origin, derived from Himalayan sources. Kaolinite and smectite are authigenic, and mainly developed within pore space and as coating of detrital particles. With increasing burial, diagenetic processes affected the original clay mineral signature. Illitisation of smectite and kaolinite occurred below 2500 and 3500 m depth, respectively. Therefore, illite in the lower parts of the Siwalik Group consists of a mixture of inherited illite and illitised smectite and kaolinite, as suggested by illite crystallinity. Detrital grains that make up the framework of the Siwalik Group sandstones mainly consist of quartz, feldspar and lithic fragments, which are principally of sedimentary and metamorphic origin. Lithoclast content increases over time at the expense of quartz and K‐feldspar in response to uplift and erosion of the Lesser Himalaya Series since about 11–10 Ma. Despite mainly felsic source rocks, dominantly physical erosion processes in the Himalayan belt, and high‐energy fluvial depositional systems, smectite is abundant in the <7 Ma Siwalik Group deposits. Analyses of the Siwalik deposits and comparison with the clay mineralogy of the modern drainage system suggest that smectite preferentially formed in floodplains and intermontane valleys during early diagenesis because of downward percolating fluids rich in cations from weathering and soil development. In general, increasing seasonality and aridity linked to variability of the Asian monsoon from about 8 Ma enhanced clay mineral formation and development of authigenic smectite in paleo‐plains on the southern side of the Himalaya.  相似文献   
9.
Rapidly eroding, coastal mountain belts, where steep rivers and submarine channels connect upland sources to nearby marine sinks are hotspots of organic carbon transfer from life biomass, soil and exhumed bedrock into geological storage. Using observations from the Southern Alps of New Zealand, and Taiwan, we have mapped this organic pathway to geological carbon sequestration, and can evaluate the magnitude and efficiency of transfers between sources and sinks. We demonstrate that POC is harvested by landsliding, but importantly also by common and widespread surface runoff on steep hillslopes. Although terrestrially sourced POC is found in many sedimentary environments associated with mountain belts and frontier basins, it appears to be most abundantly trapped and preserved in marine turbidites. The loss of all forms of POC in onward transport through short, steep routing systems to this repository is limited. This is in marked contrast to larger routing systems, in which only the most resilient forms of POC survive into long-term deposition.  相似文献   
10.
First results from a new UV laser ablation MC-ICPMS method for measuring Mg isotope ratios in situ in meteoritical materials show that there are mass-dependent variations in δ25Mg and δ26Mg up to 1.5 ‰ per amu in chondrules and 0.3‰ per amu in a CAI from the Allende meteorite. In both cases the mass-dependent fractionation is associated with alteration. Comparisons with laser ablation O isotope data indicate that incorporation of pre-existing grains of forsterite with distinct Mg and O isotopic compositions and post-formation alteration both contributed to the variability in Mg isotope ratios in the chondrules, resulting in a correlation between high δ25Mg and low Δ17O. The laser ablation analyses of the CAI show that high-precision determinations of both δ25Mg and δ26Mg can be used to discriminate features of the 26Al-26Mg isotope system that are relevant to chronology from those that result from element mobility.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号