首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5篇
  免费   0篇
地质学   5篇
  2006年   1篇
  2002年   2篇
  2001年   1篇
  2000年   1篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
The effects of source composition and source evolution duringprogressive partial melting on the chemistry of mantle-derivedmid-ocean ridge basalt (MORB) melts were tested using a comprehensivegeochemical and Sr–Nd–Pb isotopic dataset for fresh,magnesian basaltic glasses from the Miocene Macquarie Islandophiolite, SW Pacific. These glasses: (1) exhibit clear parent–daughterrelationships; (2) allow simple reconstruction of primary meltcompositions; (3) show exceptional compositional diversity (e.g.K2O/TiO2 0·09–0·9; La/Yb 1·5–22;206Pb/204Pb 18·70–19·52); (4) preserve changesin major element and isotope compositions, which are correlatedwith the degree of trace element enrichment (e.g. La/Sm). Conventionalmodels for MORB genesis invoke melting of mantle that is heterogeneouson a small scale, followed by binary mixing of variably lithophileelement-enriched melt batches. This type of model fails to explainthe compositions of the Macquarie Island glasses, principallybecause incompatible element ratios (e.g. Nb/U, Sr/Nd) and Pbisotope ratios vary non-systematically with the degree of enrichment.We propose that individual melt batches are produced from instantaneous‘parental’ mantle parageneses, which change continuouslyas melting and melt extraction proceeds. This concept of a ‘dynamicsource’ combines the models of small-scale mantle heterogeneitiesand fractional melting. A dynamic source is an assemblage oflocally equilibrated mantle solids and a related melt fraction.Common MORB magmas that integrate the characteristics of numerousmelt batches therefore tend to conceal the chemical and isotopicidentity of a dynamic source. This study shows that isotoperatios of poorly mixed MORB melts are a complex function ofthe dynamic source evolution, and that the range in isotoperatios within a single MORB suite does not necessarily requiremixing of diverse components. KEY WORDS: mid-ocean ridge basalt; Macquarie Island; radiogenic isotopes; mantle; geochemistry  相似文献   
2.
Macquarie Island is an exposure above sea-level of part of thecrest of the Macquarie Ridge. The ridge marks the Australia–Pacificplate boundary south of New Zealand, where the plate boundaryhas evolved progressively since Eocene times from an oceanicspreading system into a system of long transform faults linkedby short spreading segments, and currently into a right-lateralstrike-slip plate boundary. The rocks of Macquarie Island wereformed during spreading at this plate boundary in Miocene times,and include intrusive rocks (mantle and cumulate peridotites,gabbros, sheeted dolerite dyke complexes), volcanic rocks (N-to E-MORB pillow lavas, picrites, breccias, hyaloclastites),and associated sediments. A set of Macquarie Island basalticglasses has been analysed by electron microprobe for major elements,S, Cl and F; by Fourier transform infrared spectroscopy forH2O; by laser ablation–inductively coupled plasma massspectrometry for trace elements; and by secondary ion mass spectrometryfor Sr, Nd and Pb isotopes. An outstanding compositional featureof the data set (47·4–51·1 wt % SiO2, 5·65–8·75wt % MgO) is the broad range of K2O (0·1–1·8wt %) and the strong positive covariation of K2O with otherincompatible minor and trace elements (e.g. TiO2 0·97–2·1%;Na2O 2·4–4·3%; P2O5 0·08–0·7%;H2O 0·25–1·5%; La 4·3–46·6ppm). The extent of enrichment in incompatible elements in glassescorrelates positively with isotopic ratios of Sr (87Sr/86Sr= 0·70255–0·70275) and Pb (206Pb/204Pb =18·951–19·493; 207Pb/204Pb = 15·528–15·589;208Pb/204Pb = 38·523–38·979), and negativelywith Nd (143Nd/144Nd = 0·51310–0·51304).Macquarie Island basaltic glasses are divided into two compositionalgroups according to their mg-number–K2O relationships.Near-primitive basaltic glasses (Group I) have the highest mg-number(63–69), and high Al2O3 and CaO contents at a given K2Ocontent, and carry microphenocrysts of primitive olivine (Fo86–89·5).Their bulk compositions are used to calculate primary melt compositionsin equilibrium with the most magnesian Macquarie Island olivines(Fo90·5). Fractionated, Group II, basaltic glasses aresaturated with olivine + plagioclase ± clinopyroxene,and have lower mg-number (57–67), and relatively low Al2O3and CaO contents. Group I glasses define a seriate variationwithin the compositional spectrum of MORB, and extend the compositionalrange from N-MORB compositions to enriched compositions thatrepresent a new primitive enriched MORB end-member. Comparedwith N-MORB, this new end-member is characterized by relativelylow contents of MgO, FeO, SiO2 and CaO, coupled with high contentsof Al2O3, TiO2, Na2O, P2O5, K2O and incompatible trace elements,and has the most radiogenic Sr and Pb regional isotope composition.These unusual melt compositions could have been generated bylow-degree partial melting of an enriched mantle peridotitesource, and were erupted without significant mixing with commonN-MORB magmas. The mantle in the Macquarie Island region musthave been enriched and heterogeneous on a very fine scale. Wesuggest that the mantle enrichment implicated in this studyis more likely to be a regional signature that is shared bythe Balleny Islands magmatism than directly related to the hypotheticalBalleny plume itself. KEY WORDS: mid-ocean ridge basalts; Macquarie Island; glass; petrology; geochemistry  相似文献   
3.
Mineral and melt inclusions in olivines from the most Mg-richmagma from the southern West Sulawesi Volcanic Province indicatethat two distinct melts contributed to its petrogenesis. Thecontribution that dominates the whole-rock composition comesfrom a liquid with high CaO (up to 16 wt %) and low Al2O3 contents(CaO/Al2O3 up to 1), in equilibrium with spinel, olivine (Fo85–91;CaO 0·35–0·5 wt %; NiO 0·2–0·30wt %) and clinopyroxene. The other component is richer in SiO2(>50 wt %) and Al2O3 (19–21 wt %), but contains significantlyless CaO (<4 wt %); it is in equilibrium with Cr-rich spinelwith a low TiO2 content, olivine with low CaO and high NiO content(Fo90–94; CaO 0·05–0·20 wt %; NiO0·35–0·5 wt %), and orthopyroxene. Boththe high- and low-CaO melts are potassium-rich (>3 wt % K2O).The high-CaO melt has a normalized trace element pattern thatis typical for subduction-related volcanic rocks, with negativeTa–Nb and Ti anomalies, positive K, Pb and Sr anomalies,and a relatively flat heavy rare earth element (HREE) pattern.The low-CaO melt shows Y and HREE depletion (Gdn/Ybn 41), butits trace element pattern resembles that of the whole-rock andhigh-CaO melt in other respects, suggesting only small distinctionsin source areas between the two components. We propose thatthe depth of melting and the dominance of H2O- or CO2-bearingfluids were the main controls on generating these contrastingmagmas in a syn-collisional environment. The composition ofthe low-CaO magma does not have any obvious rock equivalent,and it is possible that this type of magma does not easily reachthe Earth's surface without the assistance of a water-poor carriermagma. KEY WORDS: melt inclusions; mineral chemistry; olivine; syn-collisional magmatism; ankaramites; low-Ca magma  相似文献   
4.
The present study examines sedimentation rates in the eastern Gotland Basin using a variety of methods that reveal considerable heterogeneity in the rates, both spatially and temporally. High-resolution seismic recordings and correlation with long sediment cores indicate increased thickness of strata and higher sedimentation rates (0.75 mm a -1 ) in the eastern part of the basin than in the western part (0.23 mm a -1 ) since the Littorina transgression some 8000 14 C years BP. This difference is apparently a consequence of a counterclockwise near-bottom circulation in the basin with periodically high current speeds that cause winnowing on the steep SE slope of the basin and differential settling of sediments in areas of low current speeds. On shorter time scales, recent sediment accumulation rates based on radiometric dating ( 210 Pb) are in general twice as high as those observed 25 years ago using the same method. The higher modern rates, compared to those of the 1970s, may partly be due to increased eutrophication, as more carbon is buried in the sediment, and partly due to increased erosion in shallow water areas. However, strong lateral variations are evident. The average sediment accumulation rates vary between 119 and 340 g m -2 a -1 (corresponding to sedimentation rates of 2.1-2.5 mm a -1 ) in the deepest part of the basin. Very high rates (6100 g m -2 a -1 , corresponding to sedimentation rates of 30 mm a -1 ) are observed on an intraslope basin site (offshore Latvia) at a water depth of only 70 m. The radiometrically determined sediment accumulation rates are up to three times higher than those estimated from average water column concentrations of suspended matter and from sediment trap flux rates. The discrepancy suggests that sedimentation in the deep basin may have a substantial contribution from near-bottom lateral transport.  相似文献   
5.
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号