首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   0篇
地球物理   3篇
地质学   34篇
天文学   2篇
  2018年   2篇
  2016年   2篇
  2015年   1篇
  2014年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   1篇
  2008年   2篇
  2007年   6篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1998年   2篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1985年   1篇
  1984年   1篇
  1977年   1篇
排序方式: 共有39条查询结果,搜索用时 15 毫秒
1.
Experiments have been conducted in the P-T range 2.5–15 GPa and 850–1,500°C using bulk compositions in the systems SiO2–TiO2–Al2O3–Fe2O3–FeO–MnO–MgO–CaO–Na2O–K2O–P2O5 and SiO2–TiO2–Al2O3–MgO–CaO–Na2O to investigate the Ca-Eskola (CaEs Ca0.50.5AlSi2O6) content of clinopyroxene in eclogitic assemblages containing garnet + clinopyroxene + SiO2 ± TiO2 ± kyanite as a function of P, T, and bulk composition. The results show that CaEsss in clinopyroxene increases with increasing T and is strongly bulk composition dependent whereby high CaEs-contents are favoured by bulk compositions with high normative anorthite and low diopside contents. In this study, a maximum of 18 mol% CaEsss was found at 6 GPa and 1,350°C in a kyanite-eclogite assemblage garnet + clinopyroxene + kyanite + rutile + coesite. By comparison, no significant increase in CaEsss with increasing P could be observed. If the formation of oriented SiO2-rods frequently observed in eclogititc clinopyroxenes is due to the retrogressive breakdown of a CaEs-component then these textures are a cooling rather than a decompression phenomenon and are most likely to be found in kyanite-bearing eclogites cooled from temperatures ≥750°C. The presence of clinopyroxene with approx. 4 mol% CaEsss in an experiment conducted at 2.5 GPa/850°C confirms earlier suggestions based on field data that vacancy-rich clinopyroxenes are not necessarily restricted to ultrahigh pressure metamorphic conditions. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
2.
3.
The equilibrium partitioning of Fe2+ and Mg between olivine and liquid along a liquid line of descent has been determined for a calc-alkaline system, ranging in composition from picritic to andesitic. Experiments were conducted between 1000–1450° C and 1 bar to 30 kbar. Within the compositional range investigated and , the compositional dependence of the Fe2+ and Mg partitioning is a function of the Mg-content of the liquid. The Mg-content of the liquid correlates strongly with temperature. The variation of the Fe2+ and Mg partitioning were therefore evaluated individualy as functions of composition and temperature alone. The composition dependence of the cation-partitioning coefficients (Kd) is given by the following two equations:
  相似文献   
4.
Solid inclusions of halite and sylvite, formed during regional and contact metamorphism have been identified by microscopy and by electron microprobe analysis in rocks from Campolungo, Switzerland and Cornone di Blumone, Italy. The solid inclusions occur in several of the major minerals crystallized during metamorphism and have been observed as idiomorphic crystals and dendrites. The compositions measured in 100 analyses from Campolungo, Switzerland and 40 analyses from Cornone di Blumone, Italy extend across the two-phase region in the system, KCl-NaCl, indicating that the salt inclusions are high temperature precipitates. In both localities compositionally zoned and unzoned crystals have been found. Measured compositions on the temperature maximum of the two-phase region indicate at least 500° C which can be compared with 500°±20° C determined by Mercolli (1982) and Walther (1983) from the Mg content of calcites from Campolungo. The solid inclusions have been trapped apart from CO2-rich and saline, H2O-rich fluid inclusions which have been described by Mercolli (1982) as the earliest preserved fluid inclusions in the rocks. The early precipitation of salt minerals at Campolungo indicates that fluids were saturated with NaCl and KCl at 500° C and pressures of 2,000 bars or higher. Similar relationships exist between solid and fluid inclusions in the rocks of Cornone di Blumone which formed at temperatures as high as 800° C and pressures between 0.5 and 1 kilobar (Ulmer 1983). The entrapment of halite and sylvite as solid inclusions preserves the composition of the minerals which may therefore be useful as geothermometers.  相似文献   
5.
Oxygen fugacities of diogenite and mesosiderite clast material were measured with the double ZrO2 cell technique between 800° and 1150°C. The samples were taken from large clasts in the diogenites Johnstown (En73) and Tatahouine (En75), and the mesosiderites Estherville (En81), West Point (Fo88) and Emery (En68). Fugacity values for all except Emery plot near the wüstite-iron buffer curve and are interpreted as indicating similar source regions and environments of crystallization for the two suites. Emery orthopyroxene records a lower fugacity, close to the fayalite-quartz-iron buffer curve, probably as a result of equilibration with the mesosiderite matrix assemblage. The similarity of redox conditions experienced by mesosiderite orthopyroxenite and diogenites is not sufficient to require a single parent body and, if the common achondrites were derived from Vesta, mesosiderites probably came from a different body.  相似文献   
6.
Run products from high pressure experiments at 800-1,200 °C and 5-14 GPa (corresponding to depths of 150 to 420 km) on a serpentine bulk composition [close to Mg3Si2O5(OH)4] were analysed by optical microscopy, micro-Raman spectroscopy and electron microprobe. All charges exhibit strong chemical zoning. Fluid, melt and hydrous solids were mostly concentrated at the top, bottom and along the wall of the capsules. The central part of the charge was devoid of H2O. Both fluid and hydrous magnesian phases exhibit a Mg/Si ratio higher than forsterite. In contrast, the centre of the capsule was enriched in SiO2. The observed zoning can neither be explained by gravitational settling nor by a thermal gradient alone. Most likely the fluid was separated from the solids by surface forces and thereby established the chemical gradient by preferentially dissolving MgO. If strong chemical zoning is taken into account, the occurrence of more phases than allowed by the phase rule can be explained by separating the bulk into several domains of different bulk compositions. Results indicate that small amounts of F increase the stability field of clinohumite, Mg9Si4O16(OH,F)2, compared to OH-clinohumite in pure MSH previously reported. Clinohumite coexists with enstatite up to 975 °C at 5 GPa, and up to 1,100 °C at 12 GPa. At 14 GPa (close to the !/#-Mg2SiO4 transition) phase E becomes the most important water carrier. The new results indicate that clinohumite could be an important mantle mineral for transporting water into the Earth's transition zone due to its high thermal stability compared to other important water carriers such as serpentine and phase A.  相似文献   
7.
High-pressure liquids in the MgO-SiO2-H2O (MSH) system have been investigated at 11 and 13.5 GPa and between 1000 and 1350 °C. A bulk composition more magnesian than the tie-line forsterite-H2O was employed for the study. Rocking multi-anvil experiments were combined with a diamond trap set-up. After termination of the experiments, the liquid trapped in the diamond layer was analysed by laser ablation ICP-MS using the ‘freezing’ technique. At 11 GPa, liquids coexist with one or two of phase A, clinohumite, chondrodite, and forsterite. A marked discontinuity in the evolution of liquid compositions near 1100 °C is observed at 11 GPa. A step of ∼13 wt% H2O and 13 wt% MgO is interpreted to result from overstepping the fluid-saturated solidus reaction mass balanced to 1.00(18) phase A + 1.07(4) fluid = 0.63(15) chondrodite + 1.44(2) melt. At 13.5 GPa liquids coexist with one or two of hydrous wadsleyite, clinohumite, superhydrous B, phase B, and forsterite. The discontinuity in liquid composition is no longer present, indicating that the second critical endpoint of the solidus has been overstepped. Thus, hydrous melts in the Mg-rich part of the MSH system (molar bulk Mg/Si > 2) are chemically distinct from aqueous fluids at pressure up to 11 GPa. Convergence of fluid and melt compositions along the solidus resulting in a supercritical liquid occurs between 11 and 13.5 GPa, at which pressure the entire MSH system becomes supercritical.  相似文献   
8.
The stability of synthetic armalcolite of composition (Fe0.5Mg0.5Ti2O5 was studied as a function of total pressure up to 15 kbar and 1200°C and also as a function of oxygen fugacity (?O2) at 1200°C and 1 atm total pressure. The high pressure experiments were carried out in a piston-cylinder apparatus using silver-palladium containers. At 1200°C, armalcolite is stable as a single phase at 10 kbar. With increasing pressure, it breaks down (dTdP = 20°C/kbar), to rutile, a more magnesian armalcolite, and ilmenite solid solution. At 14 kbar, this three-phase assemblage gives way (dTdP = 30°C/kbar) to a two-phase assemblage of rutile plus ilmenite solid solution.A zirconian-armalcolite was synthesized and analyzed; 4 wt % ZrO2 appears to saturate armalcolite at 1200°C and 1 atm. The breakdown of Zr-armalcolite occurs at pressures of 1–2 kbar less than those required for the breakdown of Zr-free armalcolite. The zirconium partitions approximately equally between rutile and ilmenite phases.The stability of armalcolite as a function of ?O2 was determined thermogravimetrically at 1200°C and 1 atm by weighing sintered pellets in a controlled atmosphere furnace. Armalcolite, (Fe0.5Mg0.5)-Ti2O5, is stable over a range ?O2 from about 10?9.5to 10?10.5 atm. Below this range to at least 10?12.8 atm, ilmenite plus a reduced armalcolite are formed. These products were observed optically and by Mössbauer spectroscopy, and no metallic iron was detected; therefore, some of the titanium must have been reduced to Ti3+. This reduction may provide yet another mechanism to explain the common association of ilmenite rims around lunar armalcolites.  相似文献   
9.
Differentiation of mantle-derived, hydrous, basaltic magmas is a fundamental process to produce evolved intermediate to SiO2-rich magmas that form the bulk of the middle to shallow continental and island arc crust. This study reports the results of fractional crystallization experiments conducted in a piston cylinder apparatus at 0.7 GPa for hydrous, calc-alkaline to arc tholeiitic magmas. Fractional crystallization was approached by synthesis of starting materials representing the liquid composition of the previous, higher temperature experiment. Temperatures ranged from near-liquidus at 1,170 °C to near-solidus conditions at 700 °C. H2O contents varied from 3.0 to more than 10 wt%. The liquid line of descent covers the entire compositional range from olivine–tholeiite (1,170 °C) to high-silica rhyolite (700 °C) and evolves from metaluminous to peraluminous compositions. The following crystallization sequence has been established: olivine → clinopyroxene → plagioclase, spinel → orthopyroxene, amphibole, titanomagnetite → apatite → quartz, biotite. Anorthite-rich plagioclase and spinel are responsible for a marked increase in SiO2-content (from 51 to 53 wt%) at 1,040 °C. At lower temperatures, fractionation of amphibole, plagioclase and Fe–Ti oxide over a temperature interval of 280 °C drives the SiO2 content continuously from 53 to 78 wt%. Largest crystallization steps were recorded around 1,040 °C and at 700 °C. About 40 % of ultramafic plutonic rocks have to crystallize to generate basaltic–andesitic liquids, and an additional 40 % of amphibole–gabbroic cumulate to produce granitic melts. Andesitic liquids with a liquidus temperature of 1,010 °C only crystallize 50 % over an 280 °C wide range to 730 °C implying that such liquids form mobile crystal mushes (<50 % crystals) in long-lived magmatic systems in the middle crust, allowing for extensive fractionation, assimilation and hybridization with periodic replenishment of more mafic magmas from deeper magma reservoirs.  相似文献   
10.
Mafic igneous rocks are widespread in the Nevado-Filábride Complex, the lowermost metamorphic unit of the internal zones of the Betic Cordilleras. They form intrusive, small, discontinuous bodies, predominantly dikes with subordinate small lava flows. The entire complex underwent alpine compressional metamorphism during the Paleogene continental collision, resulting in eclogites and blueschists in the mafic bodies and high-pressure assemblages in the intruded metasediments. Locally, weakly metamorphosed or completely unmetamorphosed igneous rocks with the same textural features occur as patches surrounded by eclogitized igneous rocks. The bulk rock chemistry of unmetamorphosed and completely metamorphosed mafic igneous rocks is consistent with an alkaline to transitional tholeiitic magmatism with typical within-plate geochemical characteristics. All but a few samples are nepheline normative and display REE and trace element characteristics typical of continental, rift-related magmatism. This conclusion is strongly supported by the mineral chemistry of the major constituents, in particular the calcic Ti-rich character of clinopyroxene, the lack of orthopyroxene, and the occurrence of kaersutitic amphibole. Incompatible trace element abundances and Sr and Nd isotopes support the provenance of these magmas from a variably metasomatized previously depleted sub-continental lithospheric mantle source. Received: 5 July 1999 / Accepted: 28 February 2000  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号