首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88篇
  免费   0篇
  国内免费   3篇
测绘学   1篇
大气科学   5篇
地球物理   23篇
地质学   19篇
海洋学   4篇
天文学   22篇
综合类   1篇
自然地理   16篇
  2018年   1篇
  2017年   1篇
  2016年   3篇
  2015年   2篇
  2013年   9篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   8篇
  2007年   5篇
  2006年   1篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   4篇
  1998年   3篇
  1997年   3篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   1篇
  1992年   1篇
  1991年   2篇
  1990年   3篇
  1988年   3篇
  1987年   3篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
  1973年   1篇
排序方式: 共有91条查询结果,搜索用时 219 毫秒
1.
This paper evaluates the analytical precision, accuracy and long‐term reliability of the U‐Pb age data obtained using inductively coupled plasma–mass spectrometry (ICP‐MS) with a frequency quintupled Nd‐YAG (λ = 213nm) laser ablation system. The U‐Pb age data for seven standard zircons of various ages, from 28 Ma to 2400 Ma (FCT, SL13, 91500, AS3, FC1, QGNG and PMA7) were obtained with an ablation pit size of 30 μm diameter. For 207Pb/206Pb ratio measurement, the mean isotopic ratio obtained on National Institute of Standards and Technology (NIST) SRM610 over 4 months was 0.9105 ± 0.0014 (n = 280, 95% confidence), which agrees well with the published value of 0.9096. The time‐profile of Pb/U ratios during single spot ablation showed no significant difference in shape from NIST SRM610 and 91500 zircon standards. These results encouraged the use of the glass standard as a calibration standard for the Pb/U ratio determination for zircons with shorter wavelength (λ = 213 nm) laser ablation. But 206Pb/238U and 207Pb/235U ages obtained by this method for seven zircon standards are systematically younger than the published U‐Pb ages obtained by both isotope dilution–thermal ionization mass spectrometry (ID‐TIMS) and sensitive high‐resolution ion‐microprobe (SHRIMP). Greater discrepancies (3–4% younger ages) were found for the 206Pb/238U ages for SL13, AS3 and 91500 zircons. The origin of the differences could be heterogeneity in Pb/U ratio on SRM610 between the different disks, but a matrix effect accuracy either in the ICP ion source or in the ablation‐transport processes of the sample aerosols cannot be neglected. When the 206Pb/238U (= 0.2302) newly defined in the present study is used, the measured 206Pb/238U and 207Pb/235U ages for the seven zircon standards are in good agreement with those from ID‐TIMS and SHRIMP within ±2%. This suggests that SRM610 glass standard is suitable for ICP‐MS with laser ablation sampling (LA‐ICP‐MS) zircon analysis, but it is necessary to determine the correction factor for 206Pb/238U by measuring several zircon standards in individual laboratories.  相似文献   
2.
We numerically study the dynamic interaction of propagating cracks. It is assumed that propagating cracks can nucleate and drive subsidiary cracks because of shear strain enhancement near the propagating crack tips. The critical strain fracture criterion is assumed in the analysis. Intense interaction is expected to occur among the cracks. All the cracks are assumed to be parallel and antiplane strain deformation is assumed in the computation.In the interaction of two non-coplanar cracks, a strain shadow is formed in the neighborhood of each crack because of the strain release by the introduction of the crack. The growth of each crack is accelerated when the propagating tips of each crack are outside of the strain shadow of the other crack. In general, the crack tips enter the strain shadow, and the crack tips decelerate. The calculation shows that only one of the two cracks can continue to grow, and the other's growth is decelerated and arrested. If we can assume that the suite of cracks interact in a pairwise manner only, then this may suggest that only a limited number of cracks can continue to grow during the final stage of the rupture process. Hence the crack interaction causes complexity in dynamic earthquake faulting. The concepts of barrier and asperity have been employed by many researchers for the interpretation of complex seismic wave data. However, the physical realities of such concepts are obscure. Our calculations show that dynamic crack interactions can produce barriers and asperities in some cases; the crack tip deceleration or arrest due to the interactions among non-coplanar cracks can be interpreted as being due to a barrier. The dynamic coalescence among the coplanar cracks can be regarded as an asperity.Umeda found a localized area that strongly radiates high-frequency seismic waves in the epicentral areas of some large shallow earthquakes. He defined this as an earthquake bright spot. Our analysis implies that only a limited number of cracks continue to grow when many interactive cracks nucleate, and that all other cracks stop extending soon after nucleation. Hence, if the nucleation and termination of several cracks occur in a localized area, it will be observed seismologically as an earthquake bright spot. This is because it is theoretically known that the sudden termination of crack growth and dynamic crack coalescence efficiently emits high-frequency elastic waves.  相似文献   
3.
We present high resolution millimeter, near-infrared, and optical data on the Wolf-Rayet nucleus of the Liner NGC 6764. The millimeter12CO(1-0) maps were obtained using the Nobeyama Millimeter Interferometer. Near-infrared images in the K-band continuum and the 2.12µm H2, 2.06µm He I, 2.17µm Br, and 1.64µm [Fe II] lines were taken with the MPE imaging spectrometer FAST at the William Herschel Telescope on La Palma, Spain. The optical data were obtained at the 3.5m telescope on Calar Alto, Spain. The measurements indicate a strong concentration of molecular gas and a massive starburst at the nucleus of NGC 6764. The interferometric position velocity map of the nucleus shows the presence of distinct molecular cloud complexes with an apparently asymmetric velocity field shifted towards the blue with respect to the systemic velocity of 2420 km s–1. The distribution of the 2.12µm H2 line flux exhibits extensions approximately perpendicular to the bar which are in agreement with structural features in VLA radio maps and IRAM 30m maps of the12CO(2–1) line emission. This may represent evidence for combination of a nuclear outflow and a central oval distortion of gas predicted by gas dynamical calculations as a response to a bar like potential. A detailed investigation of the Wolf-Rayet-feature at 466 nm indicates that it is spatially extended on a scale of a few arcseconds.  相似文献   
4.
We theoretically study the scattering ofP, SV andSH waves by a zonal distribution of cracks, which simulates a fault fracture zone. An investigation is conducted how the geometrical properties of the crack distribution and the frictional characteristics of the crack surface are reflected in the attenuation and dispersion of incident waves, as well as in the amplitudes of the transmitted and reflected waves from the zone. If the crack distribution within the fault zone changes temporally during the preparation process of the expected earthquake, it will be important for earthquake prediction to monitor it, utilizing the scattering-induced wave phenomena.We consider the two-dimensional problem. Aligned cracks with the same length are assumed to be randomly distributed in a zone with a finite width, on which elastic waves are assumed to be incident. The distribution of cracks is assumed to be homogeneous and sparse. The crack surface is assumed to be stress-free, or to undergo viscous friction; the latter case simulates fluid-filled cracks. The opening displacement of the crack is assumed to be negligibly small. The idea of the mean wave formalism is employed in the analysis, and Foldy's approximation is assumed.When the crack surface is stress-free, it is commonly observed for every wave mode (P, SV andSH) that the attenuation coefficientQ –1 peaks aroundka1, the phase velocity is almost independent ofk in the rangeka<1 and it increases monotonically withk in the rangeka>1, wherek is the intrinsicS wavenumber anda is the half length of the crack. The effect of the friction is to shift the peak ofQ –1 and the corner of the phase velocity curve to the low wavenumber range. The high wavenumber asymptote ofQ –1 is proportional tok –1 independently of model parameters and the wave modes. If the seismological observation thatQ –1 ofS waves has a peak at around 0.5 Hz in the earth's crust is combined with our results, the upper limit of crack size within the crust is estimated about 4 km. The information regarding the transmitted and reflected waves, such as the high wavenumber limit of the amplitude of the transmitted wave etc., allows estimation of the strength of the friction.  相似文献   
5.
6.
Two distinct phases are commonly observed at the initial part of seismograms of large shallow earthquakes: low-frequency and low-amplitude waves following the onset of a P wave ( P 1) are interrupted by the arrival of the second impulsive phase P2 enriched with high-frequency components. This observation suggests that a large shallow earthquake involves two qualitatively different stages of rupture at its nucleation.
We propose a theoretical model that can naturally explain the above nucleation behaviour. The model is 2-D and the deformation is assumed to be anti-plane. A key clement in our model is the assumption of a zone in which numbers of pre-existing cracks are densely distributed; this cracked zone is a model for the fault zone. Dynamic crack growth nucleated in such a zone is intensely affected by the crack interactions, which exert two conflicting effects: one tends to accelerate the crack growth, and the other tends to decelerate it. The accelerating and decelerating effects are generally ascribable to coplanar and non-coplanar crack interactions, respectively. We rigorously treat the multiple interactions among the cracks, using the boundary integral equation method (BIEM), and assume the critical stress fracture criterion for the analysis of spontaneous crack propagation.
Our analysis shows that a dynamic rupture nucleated in the cracked zone begins to grow slowly due to the relative predominance of non-coplanar interactions. This process radiates the P1 phase. If the crack continues to grow, coalescence with adjacent coplanar cracks occurs after a short time. Then, coplanar interactions suddenly begin to prevail and crack growth is accelerated; the P2 phase is emitted in this process. It is interpreted that the two distinct phases appear in the process of the transition from non-coplanar to coplanar interaction predominance.  相似文献   
7.
Abstract Compositional variation of silicates (plagioclase, K-feldspar, epidote, titanite, garnet, white mica, biotite, chlorite), ilmenite, carbonates (calcite, ankerite) and apatite, in quartzofeldspathic lithologies of the Alpine Schist, New Zealand, is discussed in terms of increasing metamorphic grade and possible isograd-producing reactions. The mineral data, in conjunction with geological considerations, are used to determine polychronous P-T arrays of an early high P/T event (c. 16°C/kb; 5°C/km) overprinted by a lower P/T event (c. 50°C/kb; 15°C/km) that provides an estimation of Mesozoic and Cenozoic exhumation of schist of 11 to 13 km and 19 to 22 km respectively. The effects of possible shear heating and recrystallization to form K-feldspar zone schist near the Alpine Fault is consistent with movement along a mid to lower crustal detachment surface during Cenozoic shortening, and near isothermal exhumation of the schists to form the Southern Alps.  相似文献   
8.
Simulation of seismicity due to fluid migration in a fault zone   总被引:5,自引:0,他引:5  
Spatio-temporal variation of rupture activity is modelled assuming fluid migration in a narrow, porous fault zone formed along a vertical strike-slip fault in a semi-infinite elastic medium. The principle of the effective stress coupled to the Coulomb failure criterion introduces mechanical coupling between fault slip and the pore fluid. The fluid is assumed to flow out of a localized high-pressure fluid compartment in the fault at the onset of earthquake rupture. The duration of the earthquake sequence is assumed to be much shorter than the recurrence period of characteristic events on the fault. Both an earthquake swarm and a foreshock–main-shock sequence can be simulated by changing the relative magnitudes of the initial tectonic stress, pore fluid pressure, fracture strength and so on. When an inhomogeneity is introduced into the spatial distribution of fracture strength, high complexity is observed in the spatio-temporal variation of rupture activity. For example, the time interval between two successive events is highly irregular, and a relatively long quiescence of activity is sometimes observed in a foreshock–main-shock sequence. The quiescence is caused by the temporary arresting of rupture extension, due to an encounter with fault segments having locally high strengths. The frequency–magnitude statistics of intermediate-size events obey the Gutenberg–Richter relation. The calculations show the temporal variation of the b value during some foreshock sequences, and the degree of the change seems to depend on the statistical distribution of the fracture strength.  相似文献   
9.
The10Be method of dating of marine sediment cores is applied to five North Pacific cores. Assuming a constant10Be precipitation rate and varying sedimentation rates with time during the past 2.5 m.y. dating confirms to that obtained from paleomagnetic stratigraphy. The10Be concentration variations with depth in the cores are primarily due to changes in sediment dilution and do not reflect cosmic ray intensity or global climate variations. The limits of10Be deposition rate variation in the investigated cores are less than ± 10% for periods of (2–7) × 105 years and less than ±30% for periods of 1 × 105 years. The data set gives a half-life of10Be is 1.50 × 106 years. The latitudinal effect of10Be concentrations and10Be/9Be ratios relates to a frequency of particulate matter occurrence (detrital and biological particles) in the oceans and to oceanic circulation.  相似文献   
10.
The depth profile of the long-lived radionuclide10Be in a marine sediment recovered in the vicinity of the Samoan Islands has been precisely assayed with a highly sensitive needle-type gas counter. The obtained irregular pattern of10Be concentrations with depths ranging from 4.7 to 0.3 dpm/kg dry sediment is interpreted as being due to dilution of10Be by volcanic eruptions in the past.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号