首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   16篇
  免费   1篇
地球物理   6篇
地质学   11篇
  2023年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   6篇
  2012年   1篇
  2011年   3篇
  2010年   1篇
  1995年   1篇
排序方式: 共有17条查询结果,搜索用时 19 毫秒
1.
Abstract

The Wadi Al Ayn plain is a coastal system on the eastern coast of Cap Bon in northeastern Tunisia. The area is known for its intensive agriculture, which is based mainly on groundwater exploitation. The aim of this study is to identify the sources of groundwater salinization in the Wadi Al Ayn aquifer system and deduce the processes that drive the mineralization. Surface water and groundwater samples were taken and analysed for major ions and stable isotopes. The geochemical data were used to characterize and classify the water samples based on a variety of ion plots and diagrams. Stable isotopes are useful tools to help us understand recharge processes and to differentiate between salinity origins. The oilfield brines infiltrated from the sandy bed of Wadi Al Ayn comprise the main source of groundwater salinization in the central part of the plain, while seawater intrusion is mainly responsible for the increased salinity in the groundwater of the coastal part of the plain (at Daroufa).

Citation Chekirbane, A., Tsujimura, M., Kawachi, A., Isoda, H., Tarhouni, J., and Benalaya, A., 2013. Hydrogeochemistry and groundwater salinization in an ephemeral coastal flood plain: Cap Bon, Tunisia. Hydrological Sciences Journal, 58 (5), 1097–1110.  相似文献   
2.
The subsurface data are a basic requirement for the set up of hydrogeological framework. Geographic information systems (GIS) tools have proved their usefulness in hydrogeology over the years which allow for management, synthesis, and analysis of a great variety of subsurface data. However, standard multi-layered systems are quite limited for modeling, visualizing, and editing subsurface data and geologic objects and their attributes. This paper presents a methodology to support the implementation of hydrogeological framework of the multi-layered aquifer system in Nabeul–Hammamet (NH) coastal region (NE, Tunisia). The methodology consists of (1) the development of a complete and generally accepted hydrogeological classification system for NH aquifer system (2) the development of relational databases and subsequent GIS-based on geological, geophysical and hydrogeological data, and (3) the development of meaningful three-dimensional geological and aquifer models, using GIS subsurface software, RockWorks 2002. The generated 3-D geological models define the lithostratigraphy and the geometry of each depositional formation of the region and delineate major aquifers and aquitards. Where results of the lithologic model revealed that there is a wide range of hydraulic conductivities in the modeled area, which vary spatially and control the groundwater flow regime. As well, 17 texturally distinct stratigraphic units were identified and visualized in the stratigraphic model, while the developed aquifer model indicates that the NH aquifer system is composed of multi-reservoir aquifers subdivided in aquifers units and separated by sandy clay aquitards. Finally, this study provides information on the storing, management and modeling of subsurface spatial database. GIS has become a useful tool for hydrogeological conceptualization and groundwater management purposes and will provide necessary input databases within different groundwater numerical models.  相似文献   
3.
Jerbi  Hamza  Sebai  Amal  Massuel  Sylvain  Riaux  Jeanne  Leduc  Christian  Tarhouni  Jamila 《Hydrogeology Journal》2023,31(5):1181-1196

Long-term exploitation schemes in many regions are often based solely on hydrodynamic factors, while the agricultural use of groundwater undergoes significant changes over time. The Bouhefna-Haffouz aquifer system in central Tunisia is one of those cases where an aquifer exploitation scheme was well designed hydrodynamically to address the political needs at the time. Fifty years later, a numerical groundwater model has been conducted to assess the sustainability of the scheme. Results show that the scheme aimed to lower the groundwater level to reduce overflow to Merguellil Wadi and maintain it at a level that benefits agricultural profitability. This caused loss of the Merguellil baseflow, forcing farmers to switch from traditional irrigation canals to deep wells and motor pumps, thereby disrupting the hydrological budget even further. The numerical model indicates that the flow to the wadi reached zero in 1978, the average flow by vertical leakage decreased from 8 hm3 in 1970 to 2 hm3 in 2020, and the horizontal percolation between the regional aquifer units increased from 1 hm3 in 1970 to 6 hm3 in 2020. Although the groundwater exploitation scheme was not previously considered a factor in local hydrological changes, the results of this study demonstrate the significant impact of societal behavior following the scheme’s implementation on the hydrological budget of Merguellil Wadi.

  相似文献   
4.

RESUMEN: En la planicie costera occidental de Bélgica, la mayor parte de la demanda de agua se abastece mediante captaciones en lentejones de agua dulce, bajo el cordón de dunas. Debido a la sobreexplotación, especialmente durante el verano, las captaciones están amenazadas por intrusiones de agua salada. Existe la posibilidad de utilizar recarga artificial, ya que en invierno una gran cantidad de agua dulce superficial se vierte al mar. Se presenta una propuesta para mejorar la gestión del agua en dicha región. Los estudios preliminares han consistido en dos ensayos: uno de recarga artificial en la zona de las dunas, y uno de doble bombeo en un cordón arenoso cerca de un canal de drenaje en la zona pantanosa de la planicie costera. La interpretación de los ensayos se realizó mediante modelación inversa. Los resultados del ensayo de recarga artificial han demonstrado la posibilidad de usar recarga artificial en la zona de captación de Koksijde. El ensayo de doble bombeo ha demonstrado que el cordón arenoso de Avekapelle, situado en la zona pantanosa, se puede utilizar como zona de captación.

RéSUMé: Dans la partie occidentale de la plaine c?tière belge, la demande en eau est pour la plupart satisfaite par des captages d'eau souterraine. Les puits captent l'eau d'une lentille d'eau douce sous le cordon dunaire. Par suite d'une surexploitation, surtout pendant l'été, ces captages d'eau sont menacés par une intrusion d'eau salé. La recharge artificielle de la nappe peut être envisagée parce que, pendant l'hiver, de grandes quantités d'eau douce sont évacuées vers la mer. Une amélioration de la gestion de la ressource en eau est donc proposée. Deux essais ont été réalisés pour une étude préliminaire: un essai de recharge artificielle dans la région des dunes et un essai de double pompage prés d'un canal de drainage dans les polders. Ces deux essais ont été interprétés grace à une méthode inverse. L'essai de recharge artificielle a démontré les possibilités de recharge de la nappe pour le site de captage de Coxyde. L'essai de double pompage a montré que le d?me sableux d'Avekapelle, dans les polders, est une région de recharge qui convient.
  相似文献   
5.
A groundwater flow model has been developed in order to study the chalk aquifer of Paris Basin, based on most of the geological and hydrological available data. The numerical processes are intended to modelling the groundwater flow in the Senonian (Late Cretaceous) formations and to visualize the tracer movement in groundwater resources in the experimental site of LaSalle Beauvais (northern part Paris Basin). Both objectives were achieved as follows: (i) the comprehension of the spatial distribution of the hydraulic conductivity in the chalk aquifer taking into account the characteristics of the hydrogeological system and (ii) the use of the analytical solution for describing one‐dimensional to two‐dimensional solute transport in a unidirectional steady‐state flow tracer with scale‐dependent dispersion. Advection and diffusion mechanisms are taken into account. Comparison between the breakthrough curves of the analytical and the numerical solutions provided an excellent agreement for various ranges of scale‐related transport parameters of interest. The developed power series solution facilitates fast prediction of the breakthrough curves at each observation point. Thus, the derived new solutions are widely applicable and are very useful for the validation of numerical transport. The numerical approach is carried out by MT3DMS, a Modular 3‐D Multi‐Species Transport Model for Simulation of Advection, Dispersion, and Chemical Reactions of Contaminants in Groundwater Systems, and based on total variation‐diminishing method using the ULTIMATE algorithm. The estimation of the infected surface could constitute an approach in water management and allows to prevent the risks of pollution and to manage the groundwater resource from a durable development perspective. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
6.
The groundwater of the Korba plain represents major water resources in Tunisia. The Plio‐Quaternary unconfined aquifer of the Cap‐Bon (north‐east Tunisia) is subject to the intensive agricultural activities and high groundwater pumping rates due to the increasing of the groundwater extraction. The degradation of the groundwater quality is characterized by the salinization phenomena. Groundwater were sampled and analysed for physic‐chemical parameters: Ca2+, Mg2+, Na+, K+, Cl, SO42‐, HCO3, NO3, pH, electrical conductivity (EC), and the temperature (T°). The hydrochemical analysis is coupled with the calculation of the saturation indexes (SI gypsum, SI halite, SI calcite and SI dolomite), ionic derivation and with the ion correlations compared to chloride concentrations: Na+/ Cl, Ca2+/ Cl and Mg2+/ Cl ratios. Seawater fractions in the groundwater were calculated using the chloride concentration. Those processes can be used as indicators of seawater intrusion progression. EC methods were also conducted to obtain new informations on the spatial scales and dynamics of the fresh water–seawater interface of coastal groundwater exchange. The mixing zone between freshwater and saltwater was clearly observed from the EC profile in the investigated area where a strong increase in EC with depth was observed, corresponding to the freshwater and saltwater interface. Results of hydrochemical study revealed the presence of direct cation exchange linked to seawater intrusion and dissolution processes associated with cations exchange. These results, together with EC investigation, indicated that the groundwater is affected by seawater intrusion and is still major actor as a source of salinization of the groundwater in Korba coastal plain. Further isotopic and hydrological investigations will be necessary to identify and more understood the underlying mechanisms. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
7.
The time domain electromagnetic method (TDEM) is applied to monitor, to delineate and to map the saltwater intrusion zones in the Mediterranean Plio‐Quaternary aquifer. Forty‐two TDEM soundings were carried out in the coastal plain of Nabeul–Hammamet region (NE Tunisia). TDEM resistivity data were correlated with the existing borehole logging data to assign them to a particular lithology and to provide information about the position of the freshwater–seawater transition zone. The geoelectric sections showing the vertical configuration of seawater intrusion, with the brackish‐salty‐saturated zones, have a resistivity ranging from ~0.1 to 5 Ω?m and are detected at a depth lower than 1.5 m. The salinized zones are located at Nabeul (Sidi Moussa, Sidi El Mahrsi, Al Gasba and Mrazgua) and at Hammamet (Touristic zone of Hammamet north and south, Baraket Essahel) and reached a distance of 4 km from the coastline, indicating a severe state for the aquifer in these zones. These TDEM results are confirmed by the increase of chloride concentration content in the analysed water samples of monitoring wells. Moreover, in the northeastern part, the presence of a saltwater front located far from the coast and along the NW–SE major surface fault can be explained by two hypothesis: (i) this fault seems to provide a conduit for seawater to move readily towards the water wells and (ii) the clay and gypsum infiltration of marine Messinian deposits through the fault plane leads to low resistivities. Finally, it comes out from this study that TDEM survey has successfully depicted salinized zones of this coastal aquifer. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
8.
In arid and semi-arid regions, the groundwater overexploitation caused drawdown in piezometric levels and a degradation of chemical water quality. That is why the groundwater monitoring needs a good comprehension of the hydrogeological aquifer properties. This is specially the case of Zéramdine–Béni Hassen deep aquifer (east-central Tunisia). Seismic profiles interpretation highlights the existence of the Zéramdine fault corridor, the Boumerdès anticline, the Moknine and Mahdia grabens that represent lateral boundaries for the study aquifer. The outcrop of the aquifer is located in the Zéramdine, Béni Hassen and Ain Ben Jannet regions, where two lithostratigraphic sections were realized. The piezometric study shows that the principal groundwater flow is from west to east. A secondary flow is from NW to SE. The hydrochemical study of 22 sample shows that the aquifer is characterized by freshwater, dominated by Na–Ca–Cl–SO4 facies. The salinity increase is from the west to the east, which coincides with the principal water flow direction. The integration of all results deduced from the hydrogeophysic, hydrodynamic and hydrochemical studies is developed to investigate hydrological processes of Zéramdine–Béni Hassen aquifer and consequently to propose a conceptual model, which will help to propose a rescue plan for the studied aquifer and to implement a spatial hydrogeological database using the global information system and then to characterize the complex aquifer system.  相似文献   
9.
Abstract

The Korba aquifer, located in the north of Tunisia, suffers heavily from salinization due to seawater intrusion. In 2000, the aquifer was exploited from more than 9000 wells. The problem is that no precise information was recorded concerning the current extraction rates, their spatial distribution, or their evolution in time. In this study, a geostatistical model of the exploitation rates was constructed based on a multi-linear regression model combining incomplete direct data and exhaustive secondary information. The impacts of the uncertainty on the spatial distribution of the pumping rates on seawater intrusion were evaluated using a 3-D density-dependent groundwater model. To circumvent the large amount of computing time required to run transient models, the simulations were run in a parallel fashion on the Grid infrastructure provided by the Enabling Grid for E-Science in Europe project. Monte Carlo simulations results showed that 8.3% of the aquifer area is affected by input uncertainty.

Citation Kerrou, J., Renard, P., Lecca, G. & Tarhouni, J. (2010 Kerrou, J., Renard, P. and Tarhouni, J. 2010. Status of the Korba groundwater resources (Tunisia): observations and three-dimensional modelling of seawater intrusion. Hydrogeol. J., 18(5): 11731190. doi:10.1007/s10040-010-0573-5[Crossref], [Web of Science ®] [Google Scholar]) Grid-enabled Monte Carlo analysis of the impacts of uncertain discharge rates on seawater intrusion in the Korba aquifer (Tunisia). Hydrol. Sci. J. 55(8), 1325–1336.  相似文献   
10.
The Korba aquifer is located in the east of the Cape Bon peninsula in Tunisia. A large groundwater depression has been created in the central part of the aquifer since the 1980s, due to intense groundwater pumping for irrigation. The data collected show that the situation continues to deteriorate. Consequently, seawater is continuing to invade a large part of the aquifer. To better understand the situation and try to forecast its evolution, a three-dimensional (3D) transient density-dependent groundwater model has been developed. The model building process was difficult because of data required on groundwater discharge from thousands of unmonitored private wells. To circumvent that difficulty, indirect exhaustive information including remote sensing data and the physical parameters of the aquifer have been used in a multi-linear regression framework. The resulting 3D model shows that the aquifer is over-exploited. It also shows that after 50 years of exploitation, the time needed to turn back to the natural situation would be about 150 years if the authorities would ban all exploitation now. Such an asymmetry in the time scales required to contaminate or remediate an aquifer is an important characteristic of coastal aquifers that must be taken into account in their management.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号