首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   9篇
测绘学   1篇
大气科学   31篇
地球物理   20篇
地质学   74篇
海洋学   17篇
天文学   20篇
自然地理   4篇
  2021年   3篇
  2020年   2篇
  2019年   3篇
  2018年   7篇
  2017年   7篇
  2016年   5篇
  2015年   6篇
  2014年   7篇
  2013年   4篇
  2012年   2篇
  2011年   5篇
  2010年   6篇
  2009年   8篇
  2008年   6篇
  2007年   5篇
  2006年   6篇
  2005年   2篇
  2004年   5篇
  2003年   3篇
  2002年   4篇
  2001年   6篇
  2000年   2篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1995年   3篇
  1992年   2篇
  1990年   3篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1978年   1篇
  1974年   2篇
  1971年   2篇
  1970年   2篇
  1967年   1篇
  1966年   1篇
  1963年   3篇
  1962年   1篇
  1960年   1篇
  1955年   1篇
  1941年   1篇
  1931年   1篇
  1929年   1篇
  1928年   3篇
  1927年   2篇
  1921年   1篇
排序方式: 共有167条查询结果,搜索用时 31 毫秒
1.
2.
3.
Computational Geosciences - A Correction to this paper has been published: https://doi.org/10.1007/s10596-021-10065-y  相似文献   
4.
Epikarst communities: biodiversity hotspots and potential water tracers   总被引:1,自引:0,他引:1  
There is an exceptionally rich aquatic fauna in the epikarst, the skin of karst. High species richness in the epikarst, coupled with its special vulnerability as the first point of entry of nearly all toxic spills, makes its protection especially important. The epikarst fauna may also be an useful tool in tracing the potential route of pollutants. Copepods in epikarst have extremely local distributions, and their body size is such that they are largely at the mercy of directional flows. In a series of caves in southwest Slovenia and West Virginia, a significant fraction of the copepod species occur in less than 100 m of linear extent. This suggests a pattern of highly restricted lateral flow under normal conditions and the distribution of copepods could potentially be used to trace water movement. Under high flow conditions as would often be the case with toxic spill, mounding of water may increase the lateral radius of flow. Nevertheless, copepods may be useful tracers.  相似文献   
5.
Internally consistent thermodynamic datasets available at present call for a further improvement of the data for nepheline (Holland and Powell 1988; Berman 1991). Because nepheline is a common rock-forming mineral, an attempt has been made to improve on the present state of knowledge of its thermodynamic properties. To achieve that goal, two heterogeneous reactions involving nepheline, albite, jadeite and a-quartz in the system NaAlSiO4-SiO2 have been reversed bylong duration runs in the range 460 ≤ T(°C) ≤ 960 and 10 ≤ P(kbar) ≤ 22. Given sufficiently long run times, thealbite run products approach internal equilibrium with respect to their Al,Si order-disorder states. Using appropriate thermochemical, thermophysical, and volumetric data, Landau expansion for albite, and the relevant reaction reversals, a refined thermodynamic dataset (ΔfHi0 and Si0) has been derived for nepheline, jadeite, a-quartz, albite, and monalbite. Our refined data agree very well with theircalorimetric counterparts, but have smaller uncertainties. The refined dataset for ΔfHi0 and Si0, including their uncertainties and correlation, help generate the NaAlSiO4-SiO2 phase diagram including 2a confidence interval for eachP-T curve (Fig. 5). Editorial responsibility: W. Schreyer  相似文献   
6.
7.
Zusammenfassung Grundzüge des Bodenreliefs und geophysikalisch-geotektonische Kenntnisse im Bereiche des Indischen Ozeans ermöglichen es, Art und Reihenfolge seiner Entwicklung zu skizzieren. Eine erste, parallel den Breitengraden während der Alttrias-Zeit aufgerissene Tiefspaltenzone unter dem Riesenkontinent Gondwanaland trennte die Antarktis von Südamerika-Afrika-Indien-Australien. Durch Querdehnung der Spalten drangen gewaltige basaltische Magmamassen empor. Sie erweiterten wie in Island die aufklaffenden Brüche und drängten die Kontinente auseinander, so daß die vier genannten Großschollen bis über die heutige Lage des 50.° Süd nordwärts verlagert wurden. Hinter ihnen blieb ihre alte, basische und vulkanisch tätige Unterlage zurück als erster Südteil des Indischen Neu-Ozeans. Unregelmäßige Hemmungen bei der Norddrift der Teilschollen dürften zwischen diesen méridionale Blattspalten erzwungen haben.Deren östlichste trennte zunächst jungtriassisch Australien ab von Indien und den anderen westlichen Kontinentalschollen. Diese méridionale Blattspalte wurde zu einer mittelozeanischen Schwelle und drängte einerseits Australien an seinen Platz gegen Osten, andererseits Indien zusammen mit Lemurien gegen Westen. Dann riß die Carlsberg-Mittelindische Schwelle auf und rückte Lemurien westwärts, Indien ostwärts bis zum 90.° Ost. Von der Mittelkreidezeit an wurde die Indische Scholle gegen Norden bis vor den Himalaya verlagert. Sie kam in der Oberkreidezeit an.Dies bewirkte keine neue Mittelozeanische Spaltenschwelle mehr. Vielmehr hatte sich eine regional das gesamte Untergrundsgebiet des Indischen Ozeans erfassende Unterströmung gegen Norden entwickelt. Sie floß unter Himalaya und Tibet noch weiter gegen N und E, wo sie das bekannte Dach der Erde im Tertiär emporstemmte.Die möglichen Begründungen enthält der nachfolgende Text.
It is possible to reconstruct the nature and sequence of development of the Indian Ocean through knowledge of the topology and through geophysical-geotectonic research.The first deep fault zone situated under the great continent Gondwanaland, went parallel to the latitude during the lower Triassic Period and separated the Antarctic from South America, Africa, India and Australia. The basaltic magma was pushed up through the transverse expansion of the crevices. The opened cracks were widened like in Iceland and presed the continents apart. In this way the 4 great continents mentioned above, were pushed northwards farther than the 50° lat. S of today. Behind them remained the old, basic, and volcanicaly active foundation as the first southern floor of the Indian Ocean. Irregular retardations during the northern drift of parts of the continents probably had caused meridial fissures (Blatt-Spalten).The eastern most part of the fissures first divided in the Upper Triassic Period Australia from India and the other western continental blocks. These meridial fissures grew to a middle ocean rise and pushed on one side Australia to the east, and on the other side India together with Lemur to the west.The Carlsberg-Middle-Ocean Rise then shoved Lemur westward and India eastward to 90° E. Beginning in the Middle Cretaceous Period, the Indian block moved to the north and reached the Himalayas in the Upper Cretaceous Period. This did not cause any new middle ocean Spaltenschwelle. On the contrary, in the underground region of the Indian Ocean an underflow to the north had developed. It flowed under the Himalaya and Tibet and even more to the north and east where the famous roof of the Earth originated.The possible reasons are given in the following text.

Résumé Le relief du fond de la mer et des faits géophysicaux et géotectoniques dans la région de l'Océan Indien rendent possible d'esquisser la façon de laquelle cet Océan s'est formé. Une zone primaire de fissures profondes formée pendant le Trias inférieur et située parallèle aux degrés de latitude au-dessous du continent gigantesque Gondwanaland séparait la région antarctique d'une part et l'Amérique du Sud, l'Afrique, les Indes et l'Australie d'autre part. A la suite d'une expansion de fissures d'énormes masses basaltiques se levèrent. Celles-ci élargirent les fentes, comme en Islande, et renforcèrent la séparation des continents. C'est pourquoi les quatre boucliers cités furent poussés au-delà de 50° degré de latitude vers le Nord. Leur soubassement basique et volcanique restait à sa place et formait la première partie méridionale du nouvel Océan Indien. Des obstacles irréguliers freinèrent le mouvement vers le Nord des divers boucliers, ce qui peut avoir causé les décrochements parallèles aux méridians.Le décrochement le plus oriental séparait d'abord, au Trias supérieur, l'Australie des Indes et des autres boucliers continentaux à l'Ouest. Le linéament décroché se transforma en un seuil au milieu de l'Océan et poussa d'une part l'Australie vers sa place orientale, d'autre part les Indes avec la Lémurie vers l'Ouest. Puis le linéament Carlsberg au milieu de l'Océan Indien s'ouvrit et transporta la Lémurie vers l'Ouest, les Indes vers l'Est. Dès le Crétacé moyen le bouclier indien a été transporté vers le Nord jusqu'au Himalaya. Il y arriva pendant le Crétacé supérieur.Ceci ne causa plus une nouvelle élévation au milieu de l'Océan. Plutôt il s'était produit une subfluence générale dirigée vers le Nord et emportant le soussol entier de l'Océan Indien. Cette subfluence se prolongea au-dessous de l'Himalaya et du Tibet vers le NE, soulevant au Tertiaire le célèbre Toit de la Terre.Dans la suite les raisons de cette opinion seront exposées.

. , . . .
  相似文献   
8.
The intention of our study was to gain new insight into the complex interplay between different types of eruption of the Stromboli volcano by combining detailed field observation with different geophysical methods. We recorded more than 600 eruptions by use of continuous Doppler radar measurements. We detected the onset of the seismic precursor and the beginning of the visible eruption by use of seismic and infrared data. Two soil samples per day were used to monitor the effect of humidity on the eruptive style. We mapped the crater region as a reference base for the long-term morphological changes of the active region and for the exact positions of our measurement systems. Two distinct types of eruption were distinguished from each other on the basis of seismic and radar data - short, wide-angle Strombolian explosions and pulsating, sharp angle fountain-like eruptions. Data and visual observations imply that weather conditions significantly effect volcanic activity. We also interpret the intensification of eruptive activity during our field study as replenishment of the reservoir with a new batch of magma in late September 2000.  相似文献   
9.
The characteristics of a boundary layer depend both on conditions at the surface and in the interior of the medium. In the undisturbed tropics, the latter are largely determined by subsidence and by infrared radiational cooling. One-dimensional models are used to establish relationships between the inversion height, subsidence, upper-air humidity and sea-surface temperature. In particular, it is shown that a universally colder tropical ocean would probably be covered by more extensive clouds.Contribution No. 1700 Rosenstiel School of Marine and Atmospheric Science, University of Miami.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号