首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   56篇
  免费   3篇
  国内免费   31篇
测绘学   1篇
大气科学   2篇
地球物理   15篇
地质学   67篇
海洋学   3篇
自然地理   2篇
  2022年   4篇
  2021年   3篇
  2020年   3篇
  2019年   3篇
  2018年   13篇
  2017年   9篇
  2016年   2篇
  2015年   11篇
  2014年   3篇
  2013年   6篇
  2012年   3篇
  2011年   4篇
  2009年   4篇
  2008年   2篇
  2007年   3篇
  2006年   8篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2001年   2篇
  1997年   2篇
  1989年   1篇
排序方式: 共有90条查询结果,搜索用时 15 毫秒
1.
The Tso Morari Complex, which is thought to be originally the margin of the Indian continent, is composed of pelitic gneisses and schists including mafic rock lenses (eclogites and basic schists). Eclogites studied here have the mineral assemblage Grt + Omp + Ca-Amp + Zo + Phn + Pg + Qtz + Rt. They also have coesite pseudomorph in garnet and quartz rods in omphacite, suggesting a record of ultrahigh-pressure metamorphism. They occur only in the cores of meter-scale mafic rock lenses intercalated with the pelitic schists. Small mafic lenses and the rim parts of large lenses have been strongly deformed to form the foliation parallel to that of the pelitic schists and show the mineral assemblages of upper greenschist to amphibolite facies metamorphism. The garnet–omphacite thermometry and the univariant reaction relations for jadeite formation give 13–21 kbar at 600 °C and 16–18 kbar at 750 °C for the eclogite formation using the jadeite content of clinopyroxene (XJd = 0.48).

Phengites in pelitic schists show variable Si / Al and Na / K ratios among grains as well as within single grains, and give K–Ar ages of 50–87 Ma. The pelitic schist with paragonite and phengite yielded K–Ar ages of 83.5 Ma (K = 4.9 wt.%) for paragonite–phengite mixture and 85.3 Ma (K = 7.8 wt.%) for phengite and an isochron age of 91 ± 13 Ma from the two dataset. The eclogite gives a plateau age of 132 Ma in Ar/Ar step-heating analyses using single phengite grain and an inverse isochron age of 130 ± 39 Ma with an initial 40Ar / 36Ar ratio of 434 ± 90 in Ar/Ar spot analyses of phengites and paragonites. The Cretaceous isochron ages are interpreted to represent the timing of early stage of exhumation of the eclogitic rocks assuming revised high closure temperature (500 °C) for phengite K–Ar system. The phengites in pelitic schists have experienced retrograde reaction which modified their chemistry during intense deformation associated with the exhumation of these rocks with the release of significant radiogenic 40Ar from the crystals. The argon release took place in the schists that experienced the retrogression to upper greenschist facies metamorphisms from the eclogite facies conditions.  相似文献   

2.
Fluxes of Sr into the headwaters of the Ganges   总被引:1,自引:0,他引:1  
Himalayan weathering is recognized as an important agent in modifying sea water chemistry, but there are significant uncertainties in our understanding of Himalayan riverine fluxes. This paper examines causes of the variability, including that of the seasons, by analysis of downstream variations in Sr, 87Sr, and major ions in the mainstream, in relation to the composition of tributary streams from subcatchments with differing geologic substrates.Water samples were collected over four periods spanning the premonsoon, monsoon, and postmonsoon seasons. Uncertainties in the relative fluxes have been estimated, using Monte Carlo techniques, from the short-term variability of mainstream chemistry and the scatter of tributary compositions. The results show marked seasonal variations in the relative inputs related to high monsoon rainfall in the High and Lesser Himalaya, contrasting with the major contribution from glacial melt waters from the Tibetan Sedimentary Series (TSS) at times of low rainfall. Much of the spread in previously published estimates of the sources of Sr in Himalayan rivers may result from these seasonal variations in Sr fluxes.The annual fluxes of Sr into the headwaters of the Ganges are derived from the three main tectonic units in the proportions 35 ± 1% from the TSS, 27 ± 3% from the High Himalayan Crystalline Series (HHCS), and 38 ± 8% from the Lesser Himalaya. The particularly elevated 87Sr/86Sr ratios characteristic of the HHCS and the Lesser Himalaya enhance their influence on seawater Sr-isotope composition. The TSS contributes 13 ± 1%, the HHCS 30 ± 3%, and the Lesser Himalaya 57 ± 11% of the 87Sr flux in excess of the seawater 87Sr/86Sr ratio of 0.709.  相似文献   
3.
There are numerous hot springs with temperatures ranging from 30 to 100 °C in Biga peninsula and they occur throughout the peninsula. The result of this study shows that the region is under a tectonic compressional regime. The investigation of the faults and fractures in the region indicates that the region has been affected first by N–S and then E–W compression since the Middle Miocene. Opening fractures and antithetic and synthetic faults due to the compressional movements provide paths for the deep circulation of water. In addition, the tectonic movements, granitic intrusion and volcanic activity have also played important roles as heat sources for the geothermal systems.  相似文献   
4.
Abstract The Solund‐Stavfjord ophiolite complex (SSOC) in western Norway represents a remnant of the Late Ordovician oceanic lithosphere, which developed in an intermediate‐ to fast‐spreading Caledonian back‐arc basin. The internal architecture and magmatic features of its crustal component suggest that the SSOC has a complex, multistage sea floor spreading history in a supra‐subduction zone environment. The youngest crustal section associated with the propagating rift tectonics consists of a relatively complete ophiolite pseudostratigraphy, including basaltic volcanic rocks, a transition zone between the sheeted dyke complex and the extrusive sequence, sheeted dykes, and high‐level isotropic gabbros. Large‐scale variations in major and trace element distributions indicate significant remobilization far beyond that which would result from magmatic processes, as a result of the hydrothermal alteration of crustal rocks. Whereas K2O is strongly enriched in volcanic rocks of the extrusive sequence, Cu and Zn show the largest enrichment in the dyke complex near the dyke–volcanic transition zone or within this transition zone. The δ18O values of the whole‐rock samples show a general depletion structurally downwards in the ophiolite, with the largest and smallest variations observed in volcanic rocks and the transition zone, respectively. δ18O values of epidote–quartz mineral pairs indicate 260–290°C for volcanic rocks, 420°C for the transition zone, 280–345°C for the sheeted dyke complex and 290–475°C for the gabbros. The 87Sr/86Sr isotope ratios show the widest range and highest values in the extrusive rocks (0.70316–0.70495), and generally the lowest values and the narrowest range in the sheeted dyke complex (0.70338–0.70377). The minimum water/rock ratios calculated show the largest variations in volcanic rocks and gabbros (approximately 0–14), and generally the lowest values and range in the sheeted dyke complex (approximately 1–3). The δD values of epidote (?1 to ?12‰), together with the δ18O calculated for Ordovician seawater, are similar to those of present‐day seawater. Volcanic rocks experienced both cold and warm water circulation, resulting in the observed K2O‐enrichment and the largest scatter in the δ18O values. As a result of metal leaching in the hot reaction zone above a magma chamber, Zn is strongly depleted in the gabbros but enriched in the sheeted dyke complex because of precipitation from upwelling of discharged hydrothermal fluids. The present study demonstrates that the near intact effect of ocean floor hydrothermal activity is preserved in the upper part of the SSOC crust, despite the influence of regional lower greenschist facies metamorphism.  相似文献   
5.
The Zedong ophiolites in the eastern Yarlung–Zangbo suture zone of Tibet represent a mantle slice of more than 45 km~2. This massif consists mainly of mantle peridotites, with lesser gabbros, diabases and volcanic rocks. The mantle peridotites are mostly harzburgite, lherzolite; a few dike-like bodies of dunite are also present. Mineral structures show that the peridotites experienced plastic deformation and partial melting. Olivine(Fo89.7–91.2), orthopyroxene(En_(88–92)), clinopyroxene(En_(45–49) Wo_(47–51) Fs_(2–4)) and spinel [Mg~#=100×Mg/(Mg+Fe)]=49.1–70.7; Cr~#=(100×Cr/(Cr+Al)=18.8–76.5] are the major minerals. The degree of partial melting of mantle peridotites is 10%–40%, indicating that the Zedong mantle peridotites may experience a multi–stage process. The peridotites are characterized by depleted major element compositions and low REE content(0.08–0.62 ppm). Their "spoon–shaped" primitive–mantle normalized REE patterns with(La/Sm)_N being 0.50–6.00 indicate that the Zedong ultramafic rocks belong to depleted residual mantle rocks. The PGE content of Zedong peridotites(18.19–50.74 ppb) is similar with primary mantle with Pd/Ir being 0.54–0.60 and Pt/Pd being 1.09–1.66. The Zedong peridotites have variable, unradiogenic Os isotopic compositions with ~(187)Os/~(188)Os=0.1228 to 0.1282. A corollary to this interpretation is that the convecting upper mantle is heterogeneous in Os isotopes. All data of the Zedong peridotites suggest that they formed originally at a mid-ocean ridge(MOR) and were later modified in supra–subduction zone(SSZ) environment.  相似文献   
6.
7.
8.
Leachate was a major cause of high risk classification. This landfill was set as one with highest possible risk classification due to high vulnerability of private water wells to contamination from leachate flows. The aim of this study is to determine the present and possible environmental risks of the leachate spreading from solid waste dumping site in Tunceli and offer solutions for those determined environmental risks. For this purpose, the characteristics of the leachate were monitored at two station points detected in the solid waste dumping site for 7 months. The characteristics of the leachate were found for pH between 7.9 and 8.7. Oxidation reduction potential (ORP) occurred between ??143 and ??48 mV while conductivity was between 2.8 and 2.6 mS. Total solid matter (TSM) and suspended solid matter (SSM) were between 1000 and 7000 mg/l, 0.2–22.5 mg/l, respectively, while total volatile solids (TVS) occurred between 300 and 1800 mg/l for the two stations. Alkalinity was approximately between 290 and 5210 mg/l, while biological oxygen demand (BOD5) and chemical oxygen demand (COD) results were 15–606 mg/l and 60–1160 mg/l, respectively, for two stations in all sampling time. In both stations, orthophosphate, ammonium nitrogen, nitrate, sulfate, and chloride analyses stayed between 3.04 and 921.1 mg/l; 0.29–619.36 mg/l; 8.94–135.04 mg/l; 125.9–1360.9 mg/l and 99.9–1249.9 mg/l, respectively, in 6 months. As a result of the characterization studies obtained from the leachate, it was found that the amounts of water entering into the waste mass and the retention period of the water in the mass were very effective in the temporal character change of the leachate. According to the Discharge Standards for Solid Waste Assessment and Disposal Facilities and Discharge to Waste Water Infrastructure Facilities of waste management regulation, the results were found to be risky. Consequently, the site in question needs to be urgently rehabilitated when considering the environmental risks of the leachate spreading from the site.  相似文献   
9.
The Pozanti–Karsanti ophiolite (PKO) is one of the largest oceanic remnants in the Tauride belt, Turkey. Micro-diamonds were recovered from the podiform chromitites, and these diamonds were investigated based on morphology, color, cathodoluminescence, nitrogen content, carbon and nitrogen isotopes, internal structure and inclusions. The diamonds recovered from the PKO are mainly mixed-habit diamonds with sectors of different brightness under the cathodoluminescence images. The total δ13C range of the PKO diamonds varies between ??18.8 and ??28.4‰, with a principle δ13C mode at ??25‰. Nitrogen contents of the diamonds range from 7 to 541 ppm with a mean value of 171 ppm, and the δ15N values range from ??19.1 to 16.6‰, with a δ15N mode of ??9‰. Stacking faults and partial dislocations are commonly observed in the Transmission Electron Microscopy foils whereas inclusions are rather rare. Combinations of (Ca0.81Mn0.19)SiO3, NiMnCo-alloy and nano-sized, quenched fluid phases were observed as inclusions in the PKO diamonds. We believe that the 13C-depleted carbon signature of the PKO diamonds derived from previously subducted crustal matter. These diamonds may have crystallized from C-saturated fluids in the asthenospheric mantle at depth below 250 km which were subsequently carried rapidly upward by asthenospheric melts.  相似文献   
10.
Tonalite–trondhjemite–granodiorite gneisses (TTG) and K-rich granites are extensively exposed in the Mesoarchean to Paleoproterozoic Bundelkhand craton of central India. The TTGs rocks are coarse- grained with biotite, plagioclase feldspar, K-feldspar and amphibole as major constituent phases. The major minerals constituting the K-rich granites are K-feldspar, plagioclase feldspar and biotite. They are also medium to coarse grained. Mineral chemical studies show that the amphiboles of TTG are calcic amphibole hastingsite, plagioclase feldspars are mostly of oligoclase composition, K-feldspars are near pure end members and biotites are solid solutions between annite and siderophyllite components. The K-rich granites have biotites of siderophyllite–annite composition similar to those of TTGs, plagioclase feldspars are oligoclase in composition, potassic feldspars have \(\hbox {X}_{\mathrm{K}}\) ranging from 0.97 to 0.99 and are devoid of any amphibole. The tonalite–trondhjemite–granodiorite gneiss samples have high \(\hbox {SiO}_{2}\) (64.17–74.52 wt%), \(\hbox {Na}_{2}\hbox {O}\) (3.11–5.90 wt%), low Mg# (30–47) and HREE contents, with moderate \((\hbox {La/Yb})_{\mathrm{CN}}\) values (14.7–33.50) and Sr/Y ratios (4.85–98.7). These geochemical characteristics suggest formation of the TTG by partial melting of the hydrous basaltic crust at pressures and depths where garnet and amphibole were stable phases in the Paleo-Mesoarchean. The K-rich granite samples show high \(\hbox {SiO}_{2}\) (64.72–76.73 wt%), \(\hbox {K}_{2}\hbox {O}\) (4.31–5.42), low \(\hbox {Na}_{2}\hbox {O}\) (2.75–3.31 wt%), Mg# (24–40) and HREE contents, with moderate to high \((\hbox {La/Yb})_{\mathrm{CN}}\) values (9.26–29.75) and Sr/Y ratios (1.52–24). They differ from their TTG in having elevated concentrations of incompatible elements like K, Zr, Th, and REE. These geochemical features indicate formation of the K-granites by anhydrous partial melting of the Paleo-Mesoarchean TTG or mafic crustal materials in an extensional regime. Combined with previous studies it is interpreted that two stages of continental accretion (at 3.59–3.33 and 3.2–3.0 Ga) and reworking (at 2.5–1.9 Ga) occurred in the Bundelkhand craton from Archaean to Paleoproterozoic.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号