首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   146篇
  免费   5篇
大气科学   3篇
地球物理   31篇
地质学   56篇
海洋学   18篇
天文学   36篇
自然地理   7篇
  2023年   1篇
  2020年   1篇
  2018年   2篇
  2017年   4篇
  2016年   2篇
  2015年   1篇
  2014年   9篇
  2013年   3篇
  2011年   2篇
  2010年   12篇
  2009年   7篇
  2008年   8篇
  2007年   4篇
  2006年   12篇
  2005年   7篇
  2004年   6篇
  2003年   6篇
  2002年   5篇
  2001年   8篇
  2000年   8篇
  1999年   1篇
  1998年   2篇
  1996年   3篇
  1995年   2篇
  1993年   5篇
  1991年   2篇
  1990年   1篇
  1988年   1篇
  1987年   1篇
  1984年   3篇
  1983年   2篇
  1981年   1篇
  1980年   5篇
  1979年   1篇
  1978年   2篇
  1977年   5篇
  1976年   3篇
  1975年   1篇
  1970年   1篇
  1963年   1篇
排序方式: 共有151条查询结果,搜索用时 15 毫秒
1.
We present paleomagnetic results of Paleocene welded tuffs of the 53–50 Ma Bogopol Group from the northern region (46°N, 137°E) of the Sikhote Alin volcanic belt. Characteristic paleomagnetic directions with high unblocking temperature components above 560 °C were isolated from all the sites. A tilt-corrected mean paleomagnetic direction from the northern region is D=345.8°, I=49.9°, α95=14.6° (N=9). The reliability of the magnetization is ascertained through the presence of normal and reversed polarities. The mean paleomagnetic direction from the northern region of the Sikhote Alin volcanic belt reflects a counterclockwise rotation of 29° from the Paleocene mean paleomagnetic direction expected from its southern region. The counterclockwise rotation of 25° is suggested from the paleomagnetic data of the Kisin Group that underlies the Bogopol Group. These results establish that internal tectonic deformation occurred within the Sikhote Alin volcanic belt over the past 50 Ma. The northern region from 44.6° to 46.0°N in the Sikhote Alin volcanic belt was subjected to counterclockwise rotational motion through 29±17° with respect to the southern region. The tectonic rotation of the northern region is ascribable to relative motion between the Zhuravlevka terrane and the Olginsk–Taukhinsk terranes that compose the basements of the Sikhote Alin volcanic belt.  相似文献   
2.
Exploration for volcanogenic massive sulfide deposits of the kuroko-type is underway in many places. Clarifying the spatial patterns of the metals in kuroko deposits will be useful for understanding their genetic mechanisms and for future exploration of such types of deposits. This study represents a spatial distribution analysis on the contents of principal metals of kuroko deposits: Cu, Pb, and Zn, in the Hokuroku district, northern Japan, by a feedforward neural network and 1917 sample data at 143 drillhole sites. The network, which consists of three layers, was trained by the principle of SLANS in which the numbers of neurons in the middle layer and training data are changed to improve estimation accuracy. Using the weight coefficients connecting adjacent neurons, sensitivity analysis of the neural network was carried out to identify factors influencing spatial distributions of the three metals. The coordinates depth (z) direction, Bouguer gravity, and specific lithology such as dacite were determined to be influencing factors. The high frequency of the z coordinate signifies that the metal contents differ to a large extent by depth. The sensitivity vector was defined using sensitivity coefficients for x, y, and z coordinates of an estimation point. We determined that the directions of large vectors were different inside and outside of the Hanawa-Ohdate area. This characteristic is considered to originate from the differences in the permeability of fractures that became the paths for rising ore solutions, and the depths that the solutions mixed with sea water.  相似文献   
3.
Acid mine drainage (AMD) is a widespread environmental problem associated with working and abandoned mining operations. It results from the microbial oxidation of pyrite in the presence of water and air, affording an acidic solution that contains toxic metal ions. Pyrite microencapsulation, utilizing silica coating, is a novel approach for controlling AMD that has been shown to be very effective in controlling pyrite oxidation. The roles of the solution pH and silica concentration in the formation mechanism for the AMD-preventing coating were investigated. A silica coating can be formed from silica solution at pH 7, at which the amount of Fe eluted from pyrite into the solution is small. No coating was formed at other pH values, and the amounts of eluted Fe were larger than at pH 7, especially at pH 11. The silica coating forms from 2,500 to 5,000 mg/L silica solutions, but not from 0 or 1,000 mg/L silica solutions. The coating formation rate was slower in the 2,500 mg/L silica solution than in the 5,000 mg/L silica solution. The formation of silica coating on pyrite surfaces depends on three main steps: formation of Fe(OH)3 on the surface of pyrite, reaction between Fe(OH)3 and silicate in the solution on the pyrite surface, and growth of the silica layer on the first layer of silica. The best pH condition to enable these steps was around 7, and the silica coating formation rate can be controlled by the concentration of silica.  相似文献   
4.
Magnetic carriers in remagnetized Cretaceous granitic rocks of northeast Japan were studied using paleomagnetism, rock magnetism, optical microscopy and scanning electron microscopy (SEM) by comparison with unremagnetized granitic rocks. The natural remanent magnetization (NRM) of the remagnetized rocks is strong (0.3–1.7 A/m) and shows a northwesterly direction with moderate inclination (NW remanence), whereas the unremagnetized rocks preserve weak NRM (<0.5 A/m) with westerly and shallow direction (W remanence). Although thermal demagnetization shows that both NRMs are carried by magnetite, the remagnetized rocks reveal a higher coercivity with respect to alternating field demagnetization (20 mT相似文献   
5.
Bathymetric mapping and observations of the seafloor using a remotely operated vehicle (ROV, Hyper‐Dolphin 3K) were carried out on the slopes of the Miyako‐Sone submarine platform, east of Miyako‐jima in the Ryukyu Islands, northwestern Pacific Ocean. The bathymetric map indicates that terraces are present at water depths of approximately 140 m, 330 m, 400 m, and 680 m on the northwestern slope of the platform. A number of NW–SE trending lineaments, probably faults, extend perpendicular to the axis of the Ryukyu Island Arc. Two ROV surveys were conducted at water depths ranging from 519 m (on the slope) to 121 m (shallowest part of the platform). The surveys revealed that well‐indurated carbonate rocks are exposed at terrace margins and on upper slopes, and that the lower slopes are covered with modern sediments consisting of unconsolidated, coarse‐sand‐sized bioclastic carbonates. Calcareous nannofossils from the well‐indurated carbonate rocks indicate a Middle–Late Pleistocene age, which suggests that the rocks correlate with the Quaternary reef and fore‐reef deposits of the Ryukyu Group (Ryukyu Limestone) on the Ryukyu Islands. No siliciclastic deposits corresponding to the upper Miocene–lower Pleistocene Shimajiri Group (as exposed on Okinawa‐jima and Miyako‐jima islands) were recovered during the surveys. Coeval well‐indurated carbonate rocks, all of which formed in a similar sedimentary environment, have been downthrown towards the west due to displacements on the western sides of normal faults. Subsidence of the Miyako‐Sone submarine platform was the result of large vertical displacements on such normal faults. The timing of initial subsidence cannot be tightly constrained, but the presence of the youngest limestone at progressively lower levels towards the west suggests the subsidence continued until after 0.265 Ma.  相似文献   
6.
A series of shake-table tests was conducted by inserting and replacing 4 different types of dampers, or by removing them in a full-scale 5-story steel frame building. The objective is to validate response-control technologies that are increasingly adopted for major Japanese buildings without being attested to-date by a major earthquake. Test results are briefly described, and good performance of the dampers and frame demonstrated. The concepts of the full-scale building tests and various contributions are discussed. The difficulty associated with full-scale dynamic testing is explained.  相似文献   
7.
We suggest a new mechanism for the superoutbursts in SU UMa binaries, in which the increase in the accretion rate resulting in a superoutburst is associated with the formation of a spiral “precessional” wave in the inner parts of the disk, where gas-dynamical perturbations are negligible. The existence of such waves was suggested by us previously. The results of three-dimensional gas-dynamical simulations have shown that a considerable increase in the accretion rate (by up to an order of magnitude) is associated with the formation of the precessional wave. The features of the precessional spiral wave can explain both the energy release in the superoutburst and all its observational manifestations. One distinguishing feature of superoutbursts in SU UMa-type stars is the formation of a “superhump” in the light curve. Our model reproduces well both the formation of a superhump and its observational features, including its period, which is up to 3–7% longer than the orbital period, and the detectability of the superhump independent of the orbital inclination of the binary.  相似文献   
8.
The late Cenozoic orogeny in Japan is briefly reviewed. Amounts of volcanic materials in the three periods of the orogeny are estimated at: early Neogene 150 × 103 km3 (mafic 40 %, salic 60 %), middle and late Neogene 20 × 103 km3 (mafic 70 %, salic 30 %), Quaternary 5 × 103 km3 (mafic 80 %, salic 20 %). The largest volume per unit time is in the early Neogene, and the smallest in the middle and late Neogene. Volume per unit area becomes larger towards the southeastern margin or «front» of the volcanic belt. Thermal energy transported by volcanic materials is compared with the terrestrial heat flow in the belt.  相似文献   
9.
Over 500 oriented samples of felsic rocks of Cretaceous to Middle Miocene age were collected along the Go¯River in the central part of Southwest Japan, in an attempt to detect the process of tectonic rotation of Southwest Japan from the paleomagnetic view point. Thermal demagnetization was successful in isolating characteristic directions from the remanent magnetization of samples. Reliability of the paleomagnetic direction is ascertained through the agreement of directions from different kinds of rocks as well as the presence of both normal and reversed polarities. The paleomagnetic results establish that Southwest Japan began to rotate clockwise through58 ± 14° later than 28 Ma and ceased its motion by about 12 Ma. Southwest Japan has undergone no detectable north-south translation since 28 Ma. These results imply that southwest Japan was rotated about the pivot around 34°N, 129°E between 28 Ma and 12 Ma in association with the opening of the Japan Sea.  相似文献   
10.
A metabasalt dredged at a junction of the median valley with the Atlantis fracture zone (30°01/tN, 42°04/tW) in the Mid-Atlantic Ridge shows complete recrystallization under a metasomatic condition, though the original igneous texture of a coarse-grained basalt is still recognizable. There is strong circumstantial evidence suggesting that this rock is not an ice-rafted erratic, but an authentic Mid-Atlantic Ridge rock. The 40Ar-39Ar age of this sample is 169 m.y. (Jurassic) which should represent the time of recrystallization. The initial value (87Sr/86Sr)O is 0.720, far above the values previously observed in oceanfloor basalts, including both tholeiitic and alkalic rocks (0.701–0.704). Sr with such a high isotopic ratio is considered to have been introduced by metasomatism during metamorphism by a solution coming from a continental mass or masses which were then located very close to the Mid-Atlantic Ridge. The 40Ar−39Ar age of sample AM50 may approximate the time of the commencement of the opening of the Atlantic. All these data support the possible existence of ancient rock masses in the Mid-Atlantic Ridge, as was formerly claimed by Bonatti, Melson and others.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号