首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   211篇
  免费   4篇
大气科学   38篇
地球物理   25篇
地质学   111篇
海洋学   11篇
天文学   6篇
自然地理   24篇
  2015年   2篇
  2014年   2篇
  2013年   18篇
  2012年   6篇
  2011年   6篇
  2010年   9篇
  2009年   14篇
  2008年   8篇
  2007年   7篇
  2006年   11篇
  2005年   11篇
  2004年   3篇
  2003年   12篇
  2002年   8篇
  2001年   4篇
  2000年   8篇
  1999年   1篇
  1998年   7篇
  1997年   12篇
  1996年   10篇
  1995年   3篇
  1994年   2篇
  1993年   5篇
  1992年   6篇
  1991年   8篇
  1990年   2篇
  1989年   1篇
  1987年   2篇
  1986年   5篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
  1978年   3篇
  1975年   2篇
  1973年   2篇
  1971年   3篇
  1970年   2篇
  1965年   1篇
排序方式: 共有215条查询结果,搜索用时 15 毫秒
1.
All major streams draining the southwestern flank of the Edwards Plateau in south-central Texas transport large volumes of gravel and sandy muddy gravel and are developing meander lobe sequences consisting predominantly of coarse gravel. The largest of these streams, the Nueces River, has a sinuosity index of 1.3 and an average stream surface slope of 1.8 m/km in the study area. Stream discharge is variable and has ranged from no flow to more than 17,000 m3/s. Mean clast b-axis length for the ten largest clasts at thirteen sample sites ranged from 2.5 to 10.8 cm. Velocities of 2.7-4.4 m/s 1 m above the stream bed are required to transport these clasts. Stream velocities of these magnitudes occur about once in 8 years when discharge of the Nueces River exceeds 3300 m3/s. Mean grain size of Nueces River alluvium ranges from 1.2 to 3.4 cm. At a flow depth of 1 m, sediment of this size has a critical erosion velocity of 1.8-3 m/s. Velocities of this magnitude occur about once in two years when discharge exceeds 340 m3/s. Under these conditions flow is subcritical, with critical shear stresses on depositional surfaces ranging from 6.4 to 12.7 kg/m2. Gravel clasts are imbricated and channel bed forms are predominantly transverse gravel bars with slip faces ranging up to 2 m high and wavelengths in excess of 100 m. Stratification includes graded planar crossbeds and horizontal beds. Lower lateral accretion face sediments are also predominantly transverse bars; upper lateral accretion face deposits occur as longitudinal gravel ridges deposited in the lee of vegetation and, less commonly, as chute bars. Near the upper limit of meander lobes where vegetation is heavy, mud and muddy sand occur as overbank deposits; in these deposits sedimentary structures other than desiccation cracks are rare. Sedimentary sequences in gravel meander lobe systems deposited by low sinuosity streams are graded or non-graded horizontal beds and planar cross-beds overlain by mud and muddy sand interbedded with horizontally bedded gravels. Sequences may be several metres thick, but probably do not exceed 8-10 m in thickness. These deposits in turn are overlain by overbank deposits of mud and muddy sand. Similar sedimentary sequences occur in the extensive Quaternary terraces that parallel the Nueces River.  相似文献   
2.
3.
Abstract— Knowledge of regolith depth structure is important for a variety of studies of the Moon and other bodies such as Mercury and asteroids. Lunar regolith depths have been estimated using morphological techniques (i.e., Quaide and Oberbeck 1968; Shoemaker and Morris 1969), crater counting techniques (Shoemaker et al. 1969), and seismic studies (i.e., Watkins and Kovach 1973; Cooper et al. 1974). These diverse methods provide good first order estimates of regolith depths across large distances (tens to hundreds of kilometers), but may not clearly elucidate the variability of regolith depth locally (100 m to km scale). In order to better constrain the regional average depth and local variability of the regolith, we investigate several techniques. First, we find that the apparent equilibrium diameter of a crater population increases with an increasing solar incidence angle, and this affects the inferred regolith depth by increasing the range of predicted depths (from ~7–15 m depth at 100 m equilibrium diameter to ~8–40 m at 300 m equilibrium diameter). Second, we examine the frequency and distribution of blocky craters in selected lunar mare areas and find a range of regolith depths (8–31 m) that compares favorably with results from the equilibrium diameter method (8–33 m) for areas of similar age (~2.5 billion years). Finally, we examine the utility of using Clementine optical maturity parameter images (Lucey et al. 2000) to determine regolith depth. The resolution of Clementine images (100 m/pixel) prohibits determination of absolute depths, but this method has the potential to give relative depths, and if higher resolution spectral data were available could yield absolute depths.  相似文献   
4.
5.
6.
7.
During a 3-year study, gaseous hydrogenperoxide (H2O2) concentrations were measuredas part of the SANA project at the Melpitz FieldResearch Station and in the city of Leipzig. Typicaldaily mean H2O2 mixing ratios on sunny dayswere 0.15 to 0.25 ppbv with maximum values of 0.3 to0.5 ppbv at Melpitz, and 0.3 to 0.6 ppbv with maximumvalues of 0.4 to 1.0 ppbv in Leipzig. Over the entireperiod of the project the maximum hourly mean valueswere 2.1 ppbv and 5.3 ppbv in Melpitz and Leipzig,respectively. The data were not complete enough to show a trend.Linear regression analysis shows, that ozone(O3), temperature and solar radiation arepositively correlated with H2O2, whereasnitrogen oxides (NOx), carbon monoxide (CO) andrelative humidity are negatively correlated. Negativecorrelation between H2O2 and CO is caused byjoint occurrence of CO with NOx in exhaust gases.Negative correlation between H2O2 andrelative humidity is not necessarily in contradictionto the accelerating effect of water vapour onH2O2 formation. The strong positivecorrelation of H2O2 with the dew pointdifference however seems to better reflect theinfluence of water vapour. Multiple linear regression analysis (MLRA) of thecomponents measured, indicates the great influence of CO on the formation of H2O2 in the gasphase.  相似文献   
8.
The depositional stratigraphy of within‐channel deposits in sandy braided rivers is dominated by a variety of barforms (both singular ‘unit’ bars and complex ‘compound’ bars), as well as the infill of individual channels (herein termed ‘channel fills’). The deposits of bars and channel fills define the key components of facies models for braided rivers and their within‐channel heterogeneity, knowledge of which is important for reservoir characterization. However, few studies have sought to address the question of whether the deposits of bars and channel fills can be readily differentiated from each other. This paper presents the first quantitative study to achieve this aim, using aerial images of an evolving modern sandy braided river and geophysical imaging of its subsurface deposits. Aerial photographs taken between 2000 and 2004 document the abandonment and fill of a 1·3 km long, 80 m wide anabranch channel in the sandy braided South Saskatchewan River, Canada. Upstream river regulation traps the majority of very fine sediment and there is little clay (< 1%) in the bed sediments. Channel abandonment was initiated by a series of unit bars that stalled and progressively blocked the anabranch entrance, together with dune deposition and stacking at the anabranch entrance and exit. Complete channel abandonment and subsequent fill of up to 3 m of sediment took approximately two years. Thirteen kilometres of ground‐penetrating radar surveys, coupled with 18 cores, were obtained over the channel fill and an adjacent 750 m long, 400 m wide, compound bar, enabling a quantitative analysis of the channel and bar deposits. Results show that, in terms of grain‐size trends, facies proportions and scale of deposits, there are only subtle differences between the channel fill and bar deposits which, therefore, renders them indistinguishable. Thus, it may be inappropriate to assign different geometric and sedimentological attributes to channel fill and bar facies in object‐based models of sandy braided river alluvial architecture.  相似文献   
9.
Mafic to intermediate enclaves are evenly distributed throughoutthe dacitic 1991–1995 lava sequence of Unzen volcano,Japan, representing hundreds of mafic recharge events over thelife of the volcano. This study documents the morphological,textural, chemical, and petrological characteristics of theenclaves and coexisting silicic host lavas. The eruptive productsdescribed in this study appear to be general products of magmamingling, as the same textural types are seen at many othervolcanoes. Two types of magmatic enclaves, referred to as Porphyriticand Equigranular, are easily distinguished texturally. Porphyriticenclaves display a wide range in composition from basalt toandesite, are glass-rich, spherical and porphyritic, and containlarge, resorbed, plagioclase phenocrysts in a matrix of acicularcrystals and glass. Equigranular enclaves are andesitic, non-porphyritic,and consist of tabular, medium-grained microphenocrysts in amatrix glass that is in equilibrium with the host dacite magma.Porphyritic enclaves are produced when intruding basaltic magmaengulfs melt and phenocrysts of resident silicic magma at theirmutual interface. Equigranular enclaves are a product of a moreprolonged mixing and gradual crystallization at a slower coolingrate within the interior of the mafic intrusion. KEY WORDS: mafic enclaves; quenched mafic inclusions; magma mingling; Unzen volcano; Unzen Scientific Drilling Project; resorbed plagioclase  相似文献   
10.
Uppermost Tortonian to lower Messinian temperate carbonates crop out in the Agua Amarga Basin (SE Spain). They consist of four units. The lower three units can be tentatively assigned to the lowstand systems tract of a fourth-order sequence, constituting in turn the lowstand (‘megatrough unit’), transgressive (‘breccia unit’) and highstand (‘bedded unit’) stages of a higher-order cycle. All these materials were deposited in a small pull-apart basin related to the sinistral Carboneras strike-slip fault system. The best represented is the bedded unit (up to 25 m thick), which consists of bioclastic, bryozoan/bivalve-dominated calcarenites/calcirudites with abundant fragments of echinoids, barnacles, benthic foraminifers, coralline algae, brachiopods and solitary corals. Facies trends within this unit are roughly arranged in an E-W direction, with the coastline to the north of the basin. The depositional model is that of a gentle ramp with prograding beaches and shoals in its higher parts. Seaward of the shoals was the ‘factory area’, where most organisms lived and maximum carbonate production took place. From this area some of the skeletons were washed landwards by waves and/or currents during storms and incorporated into the shoals and beaches, and others moved downslope along the ramp as mass-flows, accumulating to form the ‘fan-bedded zone’. The factory-area and fan-bedded sediments intercalate five well-defined, thick beds of calcarenites/fine-grained calcirudites. They show bar morphologies (single or amalgamated), or make up sand-waves with very consistent tabular cross-bedding pointing landwards. These beds formed in a very shallow, wave/current-influenced, coastal environment. The bars and sand waves in the fan-bedded zone developed during lowstands, while those located higher up in the ramp interbedded with the factory facies are related to transgressive stages. Prograding beaches, shoals, factory facies and fan-bedded layers developed during the highstands. Net skeletal production occurred mainly during the highstands. Sediment-accretion values of these sediments are similar to those of present and ancient shallow-marine, temperate carbonates considering that the whole bedded unit was deposited in a 100 000-year interval (equivalent to the short eccentricity cycle). The five cycles inside the bedded unit would therefore correspond to the c. 20 000-year precession cycles of the Milankovitch band.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号