首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   13篇
  免费   0篇
地质学   11篇
海洋学   1篇
天文学   1篇
  2022年   1篇
  2020年   1篇
  2019年   1篇
  2017年   1篇
  2016年   2篇
  2011年   2篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   1篇
排序方式: 共有13条查询结果,搜索用时 15 毫秒
1.
Sytov  A. Yu.  Sobolev  A. V. 《Astronomy Reports》2022,66(11):936-952
Astronomy Reports - The paper describes three methods for constructing synthetic Doppler tomograms. These methods are applied to the results of MHD simulation of the V808 Aur polar, and the...  相似文献   
2.
The results of two-dimensional gas-dynamical numerical simulations of the structure of matter flows in the envelopes of a number of T Tauri binary systems with elliptical orbits are considered. The main flow elements in inner regions of protoplanetary disks of these stars are described. The influence of shocks on the size of the gap—a rarified region in the inner parts of the protoplanetary disk—is analyzed. A method is proposed for estimating the size of this gap from the numerical simulations, and the gap sizes for the studied stars are determined and compared with observational results. The flow dynamics in the gap is considered, and the periodic variations of the gap size on time scales of several orbital periods are analyzed. Possible observational manifestations of the studied flows are discussed.  相似文献   
3.
We carried out spectroscopy of the binary SSCyg in the Hα, Hβ, and Hγ lines in its active state in August and December 2006. We have estimated the parameters of the main flow elements contributing to the spectra. Profile variations during the orbital period are analyzed, and a Doppler tomogram computed for the Hα line. We consider the evolution of the line profiles with the development of the outburst. A phenomenological model explaining the observed outburst features is suggested. In this model, the main elements of the flow determining the shape of the spectral lines are the accretion disk, a toroidal shell formed in the inner parts of the disk, an expanding spherical shell around the accreting star, a region in front of the bow shock that forms due to the orbital motion of the disk in the circumbinary envelope, and the surface of the donor star near the inner Lagrange point, L1, which is heated by radiation from the accretor.  相似文献   
4.
5.
We present results of 3D numerical simulations of the matter flow in the disk of a binary T Tauri star. It is shown that two bow-shocks caused by the supersonic motion of the binary components in the gas of the disk are formed in the system having parameters typical for T Tauri stars. These bow-shocks significantly change the flow pattern. In particular, for systems with circular orbits they determine the size and shape of the inner gap. We also show that the redistribution of the angular momentum due to the bow-shocks leads to occurrence of two matter flows propagating from the inner edge of the circumbinary disk to the components. Further redistribution of this matter between the components is considered.  相似文献   
6.
Results of numerical modeling of the gas dynamics ofmaterial in the envelopes of T Tauri binary stars with a small component mass ratios (q = 0.08) are reported. In such systems, the less massive component is moving at a supersonic velocity, and the more massive component can move with either a subsonic or supersonic velocity. The modeling results show that the morphology of the flow changes substantially in the transition from supersonic to subsonic motion of the massive component. In particular, one of the two bow shocks vanishes, flows ofmaterial in the system are redistributed, and the characteristics of the accretion disks change. In addition, the effect of the change in the accretion mode on the evolution of the binary system and the possibility of recovering some parameters of the system from observational manifestations of shocks in the circumstellar envelope are considered.  相似文献   
7.
As a result of the interaction between an elliptical accretion disk and gas flowing into it from the circumbinary envelope in a close binary in the course of its orbital motion, the matter of the disk and the circum-disk halo is periodically ejected from the vicinity of the Lagrange point L3, and a common envelope is formed in the system. Three-dimensional numerical gas-dynamical modeling is used to study the structure and dynamics of the envelope and determine its basic parameters. The evolution of the envelope is followed on timescales of the order of several orbital periods. The matter flow ejected through the vicinity of L3 displays a spiral shape. The maximum size of the forming spiral structure is restricted by the self-intersection point, and is of the order of four to five times the component separation. We consider the dynamics of the regions directly adjacent to the spiral structure: an inner, rarified and outer, fragmented region, which further makes a transition to an expanding diffuse ring.  相似文献   
8.
We consider the structure and formation of the circumbinary envelopes in semi-detached binary systems. Three-dimensional numerical simulations of the gas dynamics are used to study the flow pattern in a binary system after it has reached the steady-state accretion regime. The outer parts of the circumbinary envelope are replenished by periodic ejections from the accretion disk and circum-disk halo through the vicinity of the Lagrange point L3. In this mechanism, the shape and position of a substantial part of the disk is specified by a precessional density wave. On timescales comparable to the orbital period, the precessional wave (and hence an appreciable fraction of the disk) will be virtually stationary in the observer’s frame, whereas the positions of other elements of the flow will vary due to the orbital rotation. The periodic variations of the positions of the disk and the bow shock formed when the inner parts of the circumbinary envelope flow around the disk result in variations in both the rate of angular-momentum transfer to the disk and the flow structure near L3. All these factors lead to a periodic increase of the matter flow into the outer layers of the circumbinary envelope through the vicinity of L3. The total duration of the ejection is approximately half the orbital period.  相似文献   
9.
Sytov  A. Yu.  Fateeva  A. M. 《Astronomy Reports》2019,63(12):1045-1055

Results of three-dimensional numerical simulations of the gas dynamics of the envelope of the young T Tauri binary star UZ Tau E are considered. The flow structure in the circumstellar envelope of the system is analyzed. It is shown that a regime with the impulsive accretion of matter from the circumstellar disk is realized in the binary system, in which there is a periodic transfer of matter to the accretion disk of the primary component through the accretion disk of the secondary.

  相似文献   
10.
Astronomy Reports - We describe a homogeneous catalog compilation of common proper motion stars based on Gaia DR2. A preliminary list of all pairs of stars within the radius of 100 pc around the...  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号