首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   117篇
  免费   3篇
  国内免费   11篇
测绘学   1篇
大气科学   4篇
地球物理   24篇
地质学   59篇
海洋学   17篇
天文学   8篇
综合类   8篇
自然地理   10篇
  2021年   3篇
  2020年   4篇
  2019年   6篇
  2018年   6篇
  2017年   12篇
  2016年   9篇
  2015年   8篇
  2014年   8篇
  2013年   10篇
  2012年   6篇
  2011年   12篇
  2010年   7篇
  2009年   4篇
  2008年   7篇
  2007年   1篇
  2006年   6篇
  2005年   2篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   3篇
  1998年   2篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1990年   1篇
  1972年   1篇
排序方式: 共有131条查询结果,搜索用时 10 毫秒
1.
VMS deposits of the South Urals developed within the evolving Urals palaeo-ocean between Silurian and Late Devonian times. Arc-continent collision between Baltica and the Magnitogorsk Zone (arc) in the south-western Urals effectively terminated submarine volcanism in the Magnitogorsk Zone with which the bulk of the VMS deposits are associated. The majority of the Urals VMS deposits formed within volcanic-dominated sequences in deep seawater settings. Preservation of macro and micro vent fauna in the sulphide bodies is both testament to the seafloor setting for much of the sulphides but also the exceptional degree of preservation and lack of metamorphic overprint of the deposits and host rocks. The deposits in the Urals have previously been classified in terms of tectonic setting, host rock associations and metal ratios in line with recent tectono-stratigraphic classifications. In addition to these broad classes, it is clear that in a number of the Urals settings, an evolution of the host volcanic stratigraphy is accompanied by an associated change in the metal ratios of the VMS deposits, a situation previously discussed, for example, in the Noranda district of Canada.Two key structural settings are implicated in the South Urals. The first is seen in a preserved marginal allochthon west of the Main Urals Fault where early arc tholeiites host Cu–Zn mineralization in deposits including Yaman Kasy, which is host to the oldest macro vent fauna assembly known to science. The second tectonic setting for the South Urals VMS is the Magnitogorsk arc where study has highlighted the presence of a preserved early forearc assemblage, arc tholeiite to calc-alkaline sequences and rifted arc bimodal tholeiite sequences. The boninitc rocks of the forearc host Cu–(Zn) and Cu–Co VMS deposits, the latter hosted in fragments within the Main Urals Fault Zone (MUFZ) which marks the line of arc-continent collision in Late Devonian times. The arc tholeiites host Cu–Zn deposits with an evolution to more calc-alkaline felsic volcanic sequences matched with a change to Zn–Pb–Cu polymetallic deposits, often gold-rich. Large rifts in the arc sequence are filled by thick bimodal tholeiite sequences, themselves often showing an evolution to a more calc-alkaline nature. These thick bimodal sequences are host to the largest of the Cu–Zn VMS deposits.The exceptional degree of preservation in the Urals has permitted the identification of early seafloor clastic and hydrolytic modification (here termed halmyrolysis sensu lato) to the sulphide assemblages prior to diagenesis and this results in large-scale modification to the primary VMS body, resulting in distinctive morphological and mineralogical sub-types of sulphide body superimposed upon the tectonic association classification.It is proposed that a better classification of seafloor VMS systems is thus achievable using a three stage classification based on (a) tectonic (hence bulk volcanic chemistry) association, (b) local volcanic chemical evolution within a single edifice and (c) seafloor reworking and halmyrolysis.  相似文献   
2.
3.
Permafrost records, accessible at outcrops along the coast of Oyogos Yar at the Dmitry Laptev Strait, NE-Siberia, provide unique insights into the environmental history of Western Beringia during the Last Interglacial. The remains of terrestrial and freshwater organisms, including plants, coleopterans, chironomids, cladocerans, ostracods and molluscs, have been preserved in the frozen deposits of a shallow paleo-lake and indicate a boreal climate at the present-day arctic mainland coast during the Last Interglacial. Terrestrial beetle and plant remains suggest the former existence of open forest-tundra with larch (Larix dahurica), tree alder (Alnus incana), birch and alder shrubs (Duschekia fruticosa, Betula fruticosa, Betula divaricata, Betula nana), interspersed with patches of steppe and meadows. Consequently, the tree line was shifted to at least 270 km north of its current position. Aquatic organisms, such as chironomids, cladocerans, ostracods, molluscs and hydrophytes, indicate the formation of a shallow lake as the result of thermokarst processes. Steppe plants and beetles suggest low net precipitation. Littoral pioneer plants and chironomids indicate intense lake level fluctuations due to high evaporation. Many of the organisms are thermophilous, indicating a mean air temperature of the warmest month that was greater than 13 °C, which is above the minimum requirements for tree growth. These temperatures are in contrast to the modern values of less than 4 °C in the study area. The terrestrial and freshwater organism remains were found at a coastal exposure that was only 3.5 m above sea level and in a position where they should have been under sea during the Last Interglacial when the global sea level was 6–10 m higher than the current levels. The results suggest that during the last warm stage, the site was inland, and its modern coastal situation is the result of tectonic subsidence.  相似文献   
4.
5.
Variations of atmospheric pressure in the North Atlantic region during Forbush decreases of galactic cosmic rays were investigated. A noticeable pressure growth with the maximum on the 3rd and 4th days after the Forbush decrease onsets was revealed over Scandinavia and the northern region of the European part of Russia. It was shown that the observed pressure growth was caused by the formation of blocking anticyclones in the region of the climatic Arctic front, as well as by the sharp slowing of the movement of North Atlantic cyclones. It was suggested that the particles that precipitate in the regions of the climatic Arctic and Polar fronts, with the minimum energies E~20–80 MeV and ~2–3 GeV, respectively, may influence the processes of cyclone and anticyclone formation and development at extratropical latitudes.  相似文献   
6.
Studies of invertebrates from steppe patches in the tundra and taiga zones of Beringia provide additional evidence that these areas could be relict steppes. A number of insect species common to both modern relict steppes and fossil Beringian insect faunal assemblages have been found. These provide important information on the moisture and temperature preferences of some of the surviving members of Pleistocene steppe-tundra insect communities. The most significant species of West Beringian insects are weevils in the genus Stephanocleonus (Coleoptera, Curculionidae), indicators of thermophytic steppe, and the pill beetle Morychus viridis (Coleoptera, Byrrhidae), the indicator of hemicryophytic steppe. The East Beringian invertebrate population of relict steppe is substantially different. Fossil evidence suggests that biotic exchange between the two parts of Beringia was limited during the Pleistocene; populations of steppe insects did not move across the Bering Land Bridge (BLB), while tundra species had more flexibility. The tundra environment reconstructed for the Pleistocene BLB should have facilitated amphi-beringian distributions for most tundra invertebrate species, but apparently only a few species achieved this.  相似文献   
7.
Sea level variability along the US West Coast is analyzed using multi-year time series records from tide gauges and a high-resolution regional ocean model, the base of the West Coast Ocean Forecast System (WCOFS). One of the metrics utilized is the frequency of occurrences when model prediction is within 0.15 m from the observed sea level, F. A target level of F?=?90% is set by an operational agency. A combination of the tidal sea level from a shallow water inverse model, inverted barometer (IB) term computed using surface air pressure from a mesoscale atmospheric model, and low-pass filtered sea level from WCOFS representing the effect of coastal ocean dynamics (DYN) provides the most straightforward approach to reaching levels F>80%. The IB and DYN components each add between 5 and 15% to F. Given the importance of the DYN term bringing F closer to the operational requirement and its role as an indicator of the coastal ocean processes on scales from days to interannual, additional verification of the WCOFS subtidal sea level is provided in terms of the model-data correlation, standard deviation of the band-pass filtered (2–60 days) time series, the annual cycle amplitude, and alongshore sea level coherence in the range of 5–120-day periods. Model-data correlation in sea level increases from south to north along the US coast. The rms amplitude of model sea level variability in the 2–60-day band and its annual amplitude are weaker than observed north of 42 N, in the Pacific Northwest (PNW) coast region. The alongshore coherence amplitude and phase patterns are similar in the model and observations. Availability of the multi-year model solution allows computation and analysis of spatial maps of the coherence amplitude. For a reference location in the Southern California Bight, relatively short-period sea level motions (near 10 days) are incoherent with those north of the Santa Barbara Channel (in part, due to coastal trapped wave scattering and/or dissipation). At a range of periods around 60 days, the coastal sea level in Southern California is coherent with the sea surface height (SSH) variability over the shelf break in Oregon, Washington, and British Columbia, more than with the coastal SSH at the same latitudes.  相似文献   
8.
The primary scientific goal of studying salt lakes is to better understand the formation of small continental-type hydrogeochemical systems. Many scientists have attributed the metamorphism of the chemical composition of salt lakes to the evaporative concentration of water. However, the formation of soda water is inconsistent with this hypothesis. Thus, analyzing intrabasinal biochemical processes and water—rocks interactions during the evaporative concentration of water allows us to understand the major mechanisms of the formation and evolution of water compositions. Therefore, the aim of this paper is to identify the key processes involved in the formation of the chemical composition of the water in Lake Doroninskoye. An analysis of the distribution of major components shows that Na+, HCO3 ?, CO3 2?, and Cl? are dominant in this water. High concentrations of these elements are the result of evaporative water concentration. Calcium, magnesium, and potassium are not accumulated because the water is saturated in minerals containing these elements. The main barrier to the growth of the sulfate content of water is sulfate reduction. This process also contributes to the additional reproduction of carbon dioxide, which reacts with the products of the hydrolysis of aluminosilicates OH? to form HCO3 ? and CO3 2?, thus further contributing to the natural processes of soda formation.  相似文献   
9.
90 Sr concentrations,resulting from the Chernobyl NPP accident,were determined in the salt lakes of the Crimea(Lakes Kiyatskoe,Kirleutskoe,Kizil-Yar,Bakalskoe and Donuzlav),together with the redistribution between the components of the ecosystems.The content of mercury in the waters of the studied reservoirs was also established.Vertical distributions of natural radionuclide activities( 238 U,232 Th,226 Ra,210 Pb,40 K) and anthropogenic 137 Cs concentrations(as radiotracers) were determined in the bottom sediments of the Koyashskoe salt lake(located in the south-eastern Crimea) to evaluate the longterm dynamics and biogeochemical processes.Radiochemical and chemical analysis was undertaken and radiotracer and statistical methods were applied to the analytical data.The highest concentrations of 90 Sr in the water of Lake Kiyatskoe(350.5 and 98.0 Bq/m 3) and Lake Kirleutskoe(121.3 Bq/m 3) were due to the discharge of the Dnieper water from the North-Crimean Canal.The high content of mercury in Lake Kiyatskoe(363.2 ng/L) and in seawater near Lake Kizil-Yar(364 ng/L) exceeded the maximum permissible concentration(3.5 times the maximum).Natural radionuclides provide the main contribution to the total radioactivity(artificial and natural combined) in the bottom sediments of Lake Koyashskoe.The significant concentration of 210 Pb in the upper layer of bottom sediments of the lake indicates an active inflow of its parent radionuclide—gaseous 222 Rn from the lower layers of the bottom sediment.The average sedimentation rates in Lake Koyashskoe,determined using 210 Pb and 137 Cs data,were 0.117 and 0.109 cm per year,respectively.  相似文献   
10.
An unusual feature of the saline stratified lakes that were formed due to ongoing postglacial uplift on the White Sea coast is the presence of several differently colored thin layers in the zone with sharp gradients. Colored layers in five lakes at various stages of separation from the sea were investigated using optical microscopy, spectrophotometry, spectrofluorimetry, and photobiology. The upper greenish colored layer located in the aerobic strata of all lakes near the compensation depth of 1% light penetration contains green algae. In the chemocline, another layer, brightly green, red or pink, is dominated by mixotrophic flagellates. Despite the very low light intensities and the presence of H 2 S, active photosynthesis by these algae appears to be occurring, as indicated by high values of the maximum quantum yield of primary photochemistry, electron transport activity, photosynthetic activity of photosystem II, the fraction of active centers, and low values of heat dissipation. In the reduced zone of the chemocline, a dense green or brown suspension of anoxygenic phototrophs(green sulfur bacteria) is located.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号