首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   0篇
地球物理   1篇
地质学   5篇
  2005年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1990年   1篇
  1982年   1篇
排序方式: 共有6条查询结果,搜索用时 15 毫秒
1
1.
Peter I Øy is located in the Bellinghausen Sea, 400 km NE of Thurston Island, West Antarctica. It is a Pleistocene volcanic island situated adjacent to a former tranform fault on the continental rise of the presently passive margin between the Pacific and Antarctica. New K-Ar age determinations ranging from 0.1 to 0.35 Ma show that the volcanism responsible for this island took place at the same time as post-subduction, rift-related volcanism occurred in the nearby Marie Byrd Land and the Antarctic Peninsula. The rocks of the island are alkalic basalt and hawaiite, benmoreite and trachyte. The basic tocks typically contain phenocrysts of olivine (Fo61–84), diopsidic augite, and plagioclase (ca. An60). Small xenoliths are present and consist of mantle-type spinel lherzolite, cumulate clinopyroxenite and gabbro and felsic inclusions that consist of medium-grained strained quartz, plagioclase, and abundant colorless glass. Chemically, the basic rocks are characterized by rather high MgO (7.8–10.2 wt.%) and TiO2 (3.1–3.7 wt.%) and relatively low CaO (8.4–9.5 wt.%) contents. They have steep REE patterns, [(La/Yb)N = 20] with HREE only 5 x chrondrite. Y and Sc are almost constant at relatively low levels. Compatible trace elements such as Ni and Cr show considerable variation (190–300 and 150–470 ppm, respectively.), whereas V shows only little variation. Sr and Nd isotope ratios vary slightly with 87Sr/86Sr averaging 0.70388 and 143Nd/144Nd 0.512782, both typical for ocean island volcanism. Lead isotope ratios are consistently high in basalts; 206Pb/204Pb = 19.194, 207Pb/204Pb = 15.728 and 208Pb/204Pb = 39.290, whereas benmoreïte is somewhat less radiogenic. Oxygen isotope analyses average δ18O = +6.0‰. Incompatible trace elements vary by a factor of 1.5–2.0 within the range of the basic rocks. It is proposed that the incompatible trace-element variations represent different degrees (<10%) of partial melting, and that these melts were later modified by minor (<15‰) olivine and spinel fractionation. The very small variation in Y (and Sc) and the very fractionated REE pattern indicate that the source had an Y- and HREE-rich residual phase, most probably garnet. Furthermore, it is suggested that the source was slightly hydrous and that melting took place at 18–20 kbar. Trachyte was derived by multiphase fractionation of ne-normative basalts, and benmoreite from hy-normative parental liquids. The rocks of Peter I Øy are generally of the same type and age as those outcropping in extensional regimes on the nearby continent, and therefore, these occurrences may be related to each other in some way. However, the Peter I Øy rocks are considerably more radiogenic in strontium and less radiogenic in neodymium than the rocks of the Antarctic Peninsula and Marie Byrd Land. Possible explanations are that Peter I Øy represent asthenospheric hot spot activity, or transtensional rifting as subduction ceased.  相似文献   
2.
Mineral and whole rocks analyses of 12 Jurassic basalt dykes from Vestfjella, Dronning Maud Land, Antarctica, are presented, and their genesis discussed. On the basis of major oxides and norms the basalts may be classified as olivine and quartz tholeiites. Plotted in the Plag---Cpx---(Opx + 4Q) and Ol---Plag---Q projections, the compositions are most compatible with fractional crystallization of olivine, clinopyroxene and plagioclase from a basalt liquid at very low pressure. The ratios between strongly incompatible elements such as Rb, Cs, Zr, Hf, Ta and Th vary considerably, and petrographic mixing calculations give poor fits with respect to Rb, Cs, Ta, Th and light REE. Initial 87Sr/86 Sr ratios range between 0.70347 and 0.70687, and show no correlation with Rb/Sr or any other SIE ratios. The trace element and Sr isotope data thus do not suggest any simple cogenetic petrogenetic model. It is concluded that the basalt melts most plausibly have been contaminated by, or mixed with anatectic melts of crustal material, rather than reflecting mantle heterogeneity.  相似文献   
3.
The intrusive complex at Hortavær represents a magma transfer zone in which multiple pulses of gabbroic and dioritic magmas evolved along Fe- and alkali-enrichment trends. Extreme alkali enrichment resulted in nepheline-normative and sparse nepheline-bearing monzodioritic and monzonitic rocks. More evolved monzonitic and syenitic rocks are silica saturated and, in some cases, quartz bearing. Previous and current research recognized an abundance of clinopyroxene and other Ca-rich phases, such as scapolite, grossular-rich garnet, and igneous-textured calcite among the mafic and intermediate rocks. Even the most pyroxene-rich samples contain low Sc concentrations, which suggests early, intense fractionation of clinopyroxene. These features and the alkali enrichment are consistent with assimilation of carbonate-rich host rocks. Carbon isotope ratios of the igneous-textured calcite indicate an origin of the carbon from host rocks rich in calcite, consistent with assimilation. However, low Nd values (−3.4 to −10.2) and moderate initial 87Sr/86Sr values (0.7052 to 0.7099) indicate the need for assimilation of quartzofeldspathic rocks as well. Models of combined assimilation and fractional crystallization indicate that assimilation of simple end members, either carbonate or silicate, cannot explain the entire data set. Instead, variable proportions of carbonate and silicate materials were assimilated, with the most pronounced assimilation effects in the mafic rocks. The reasons for variable degrees of assimilation are, as yet, uncertain. It is possible that assimilation of calc-silicate rocks with variable carbonate/silicate proportions resulted in the range of observed compositions. However, the importance of carbonate assimilation in mafic rocks compared to felsic ones suggests that assimilation of carbonates was predominant at high temperature and/or mafic magma compositions and assimilation of silicates was predominant at lower temperature and/or felsic magma compositions. We suggest that the ability of the mafic magma to dissolve higher proportions of carbonate contaminants is the result of the magma's ability to form clinopyroxene as a product of assimilation. In any case, extensive carbonate assimilation was possible because CO2 escaped from the system.  相似文献   
4.
Summary The Cenozoic alkaline basalts of northern and western Bohemia are part of the Central European Volcanic Province (CEVP) which extends from the Rhineland (Eifel, Germany) to Moravia (Czechoslovakia) and the Lover Silesia (Poland). Seven samlpes from locations within Czechoslovakia have been analyzed isotopically for the Rb-Sr and the Sm-Nd systems. Present-day, normalised 87Sr/86Sr ratios range from 0.7031 to 0.7036, and the corresponding 143Nd/144Nd ratios range from 0.51279 to 0.51286. An eigth sample from the Silurian basalts of the St. Jan type (K-Ar age: 420 Ma) occuring in the Barrandian basin in Central Bohemia is also analysed. Its Present-day, normalised, 87Sr/86Sr ratio is 0.7031, and the corresponding 143Nd/144Nd ratio 0.51288.The Nd ratios of the Cenozoic basalts are similar, but more restricted than those from Germany, but are lower than those from Lower Silesia; a trend which is converse for the Sr ratios.Comparison of the results with the systematics ofZindler andHart (1986), suggests that the mande reservoir source of the Bohemian Cenozoic CEVP basalts is similar to the HIMU (High- ocean island basalts), with transition to PUM (primitive upper mantle) or BSE (bulk silicate earth). The reservoir for the Silurian Barrandian basin basalts suggest some affinity to MORB (mid-ocean ridge basalts) or HIMU.
Résumé Les basaltes alcalins du Cénozoique du nord et de l'ouest de la Bohème appartiennent à la Province Volcanique de l'Europe Centrale (PVEC) qui s'étend de la région du Rhin (Allemagne) jusqu'en Moravie et Basse-Silésie (Pologne). Nous avons analysé les isotopes de Rb-Sr et de Sm-Nd dans sept échantillons de Tchécoslovaquie. Les valeurs mesurées, et normalisées, du rapport 87Sr/86Sr sont comprises entre 0.7031 et 0.7036 tandis que celles du rapport 143Nd/144Nd varient entre 0.51279 et 0.51286. Un huitième échantillon provient des basaltes Siluriens du type St. Jan (avec un age K-Ar de 420 Ma) dans le bassin Barrandien de la Bohème centrale. La valeur normalisée de son rapport actuel 87Sr/86Sr est de 0.7031, celle de 143Nd/144Nd est de 0.51288.Les rapports isotopiques du Nd de ces basaltes Cénozoiques sont analogues á ceux des basaltes de l'Allemagne, bien qu'ayant un domaine de variation plus restreint, mais sont plus faibles que ceux des basaltes de Basse-Silésie. Les rapports isotopiques du Sr évoluent de façon opposée.L'interprétation de ces données suivant la systématique de ces systemes isotopiques proposée par Zindler et Hart (1986) suggere que le réservoir mantellique source des basaltes de la PVEC en Boheme, est proche du pôle HIMU transitionel vers PUM ou BSE. Le réservoir mantellique source du basalt Silurien du bassin Barrandien montre des affinités avec les pôles MORB ou HIMU.


With 5 Figures  相似文献   
5.
T. Andersen  B. Sundvoll 《Lithos》1995,35(3-4):235-243
More than 300 published and unpublished Nd isotopic analyses of mantle derived rocks from the Baltic shield have been compiled. The rocks range in age from Archaean to Phanerozoic. Within any given age-interval, the mantle derived rocks range in εNd(t) from depleted mantle values at or above the growth curves of the global depleted mantle reservoirs of DePaolo (1981) and DePaolo et al. (1991) to negative values. Initial neodymium isotopic compositions below the De Paolo curve are best explained by interaction between depleted mantle derived magmas and local crustal contaminants. The data now available lend no support to the existence of isolated, less depleted or undepleted mantle domains beneath the Baltic Shield, as was suggested by Mearns et al. (1986) and Valbracht (1991a, b).  相似文献   
6.
B. Sundvoll  B.T. Larsen   《Tectonophysics》1994,240(1-4):173-189
A revised assessment of architecture and pre-rift fabric connections of the Oslo Rift has been undertaken and linked to a new appraisal of observations and data related to the initial phase of the rift evolution. In addition to half-graben segmentation, accommodation zones and transfer faults are readily identified in the linking sectors between the two main grabens and between graben segments. Axial flexures are proposed between facing half-grabens. The accommodation zones were generally sites of volcanism during rifting. Pre-rift tectonic structures played an influential role in the rift location and development. The deviant N-S axis of the Vestfold graben segment is viewed as related to pre-rift structural control through faults and shear zones. This area was probably a site of Proterozoic/Palaeozoic crustal and lithospheric attenuation.

Field evidence suggests that the rift started as a crustal sag with no apparent surface faulting in a flat and low-lying land at a time about 305–310 Ma. Volcanism, sub-surface sill intrusion and faulting started about simultaneously some time after the initial sag (300–305 Ma). Faulting and basaltic volcanism were initially localized to transfer faults along accommodation zones and a NNW-SSE transtensional zone along the eastern margin of the incipient Vestfold graben segment. This transtensional zone was probably created by right-lateral simple shear tracing pre-rift structures in response to a regional stress field with the tensional axis normal and the maximum compressional axis parallel to the NNE-SSW-trending rift axis.  相似文献   

1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号