首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   2篇
测绘学   3篇
大气科学   2篇
地球物理   8篇
地质学   11篇
海洋学   4篇
自然地理   3篇
  2020年   2篇
  2019年   2篇
  2018年   3篇
  2017年   2篇
  2016年   4篇
  2015年   3篇
  2014年   2篇
  2013年   1篇
  2011年   2篇
  2008年   4篇
  2007年   1篇
  2004年   3篇
  2002年   1篇
  2001年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
Natural Resources Research - Geological contacts in lateritic metal deposits (footwall topographies) often delineate the orebody boundaries. Spatial variations seen in such contacts are frequently...  相似文献   
2.
A new instrument (LOPAP: LOng Path liquid Absorption Photometer) for the sensitive detection of nitric acid (HNO3) in the atmosphere is described. HNO3 is sampled in a temperature controlled stripping coil mounted in an external sampling module to minimize sampling artefacts in sampling lines. After conversion into a strongly absorbing dye, HNO3 is detected in long path absorption in special Teflon® AF 2400 tubes used as liquid core wave guides. For the correction of some interferences, due to for example HONO and particle nitrate, two channels are used in series. The interferences from several potential interfering compounds including particle nitrate were quantified in the laboratory and in a large outdoor simulation chamber. With the exception of the interference caused by N2O5, which is quantitatively measured by the instrument, all tested interferences can be corrected under atmospheric conditions. Thus, in the instrument only the sum of N(V) from HNO3 and N2O5 is determined, which is expected to be a common problem of wet chemical HNO3 instruments. The instrument has a detection limit of 5–30 pptv for a time response of 6–2 min, respectively and was validated against the FTIR technique in a large outdoor simulation chamber. In addition, the applicability of the instrument was demonstrated in a field campaign.  相似文献   
3.
4.
5.
6.
This study defines the Late Cenozoic stress regimes acting around the Bolu Basin along the North Anatolian Fault in northwestern Turkey. The inferred regional stress regime, obtained from the inversion of measured fault-slip vectors as well as focal mechanism solutions, is significant and induces the right-lateral displacement of the North Anatolian Fault. The field observations have also revealed extensional structures in and around the Bolu Basin. These extensional structures can be interpreted as either a local effect of the regional transtensional stress regime or as the result of the interaction of the fault geometries of the dextral Duzce Fault and the southern escarpment of the North Anatolian Fault, bordering the Bolu Basin in the north and in the south, respectively.The inversion of slip vectors measured on fault planes indicates that a strike-slip stress regime with consistent NW- and NE-trending σHmax(σ1) and σHmin(σ3) axes is dominant. Stress ratio (R) values provided by inversion of slip vectors measured on both major and minor faults and field observations show significant variations of principal stress magnitudes within the strike-slip stress regime resulting in older transpression to younger transtension. These two stress states, producing dextral displacement along NAF, are coaxial with a consistent NE-trending σ3 axis. The earthquake focal mechanism inversions confirm that the transtensional stress regime has continued into recent times, having identical horizontal stress axis directions, characterized by NW and NE-trending σ1 and σ3 axes, respectively. A locally consistent NE-trending extensional, normal faulting regime is also seen in the Bolu Basin. The stress-tensor change within the strike-slip stress regime can be explained by variations in horizontal stress magnitudes that probably occurred in Quaternary times as a result of the westward extrusion of the Anatolian block.  相似文献   
7.
Two Cardium horizons from the topmost Azraq Formation in the eastern desert of Jordan were investigated and dated by U/Th at 330 ka; MIS 9. Fossil diversity and abundance, especially for Charophytes and gastropods with the absence of palygorskite, dolomite and evaporites, suggest the presence of a fresh water lake changing to a brackish environment at certain time intervals. A lake or possibly several smaller and shallower lakes occupied an area of about 50 km wide within the Azraq Basin. The present-day arid climate cannot support the presence of lakes in the eastern desert of Jordan, and thus MIS 9 in Jordan must have been much wetter. The source of humidity was most probably more intense Mediterranean cyclones associated with warmer than present MIS 9. However, the possibility of summer monsoon rain from the south cannot be fully excluded.  相似文献   
8.
Understanding the dynamic interactions between forest ecosystems and water in the Mediterranean region is essential for increasing ecosystem services. Even if many studies were implemented to analyse the variations of water and net primary productivity (NPP) in the last decade, this is still an important research question especially for the Eastern Mediterranean, where the research attempts are limited. The main objective of this study was to carry out a comparative analysis of catchment runoff generation and forest NPP and to reveal their temporal dynamics at basin scale in a semi-arid Mediterranean environment. The methodology consisted three steps: (i) estimating catchment runoff generation by implementing process-based J2000 modelling suite, (ii) modelling NPP of the land cover/use types by adapting an ecosystem-process model (BIOME-Biogeochemical cycles) and (iii) assessing the spatio-temporal variability of NPP and runoff dynamics by incorporating the modelling results with multiple regression analysis. Model simulations showed that temperature highly contributed to NPP variations of needle-leaf forests and grasslands. The multiple regression analysis also indicated that runoff was influenced by elevation, precipitation and forest cover. This relationship showed that the inter-annual variability in forest NPP would relate to the variations in runoff distribution across a small Mediterranean subcatchment.  相似文献   
9.
10.
ABSTRACT

Mediterranean region is identified as a primary hot-spot for climate change due to the expected temperature and rainfall changes. Understanding the potential impacts of climate change on the hydrology in these regions is an important task to develop long-term water management strategies. The aim of this study was to quantify the potential impacts of the climate changes on local hydrological quantities at the Goksu Watershed at the Eastern Mediterranean, Turkey as a case study. A set of Representative Concentration Pathways (RCP) scenarios were used as drivers for the conceptual hydrological model J2000 to investigate how the hydrological system and the underlying processes would respond to projected future climate conditions. The model was implemented to simulate daily hydrological quantities including runoff generation, Actual Evapotranspiration (AET) and soil-water balance for present (2005–2015) and future (up to 2100). The results indicated an increase of both precipitation and runoff throughout the region from January to March. The region showed a strong seasonally dependent runoff regime with higher flows during winter and spring and lower flows in summer and fall. The study provides a comparative methodology to include meteorological-hydrological modelling integration that can be feasible to assess the climate change impacts in mountainous regions.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号