首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   41篇
  免费   0篇
测绘学   1篇
地球物理   3篇
地质学   36篇
海洋学   1篇
  2022年   1篇
  2018年   1篇
  2017年   1篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   6篇
  2012年   2篇
  2011年   2篇
  2010年   5篇
  2009年   3篇
  2008年   4篇
  2007年   2篇
  2004年   1篇
  2003年   2篇
  2002年   1篇
  2000年   2篇
  1998年   1篇
排序方式: 共有41条查询结果,搜索用时 437 毫秒
1.
Geospatial technology is increasing in demand for many applications in geosciences. Spatial variability of the bed/hard rock is vital for many applications in geotechnical and earthquake engineering problems such as design of deep foundations, site amplification, ground response studies, liquefaction, microzonation etc. In this paper, reduced level of rock at Bangalore, India is arrived from the 652 boreholes data in the area covering 220 km2. In the context of prediction of reduced level of rock in the subsurface of Bangalore and to study the spatial variability of the rock depth, Geostatistical model based on Ordinary Kriging technique, Artificial Neural Network (ANN) and Support Vector Machine (SVM) models have been developed. In Ordinary Kriging, the knowledge of the semi-variogram of the reduced level of rock from 652 points in Bangalore is used to predict the reduced level of rock at any point in the subsurface of the Bangalore, where field measurements are not available. A new type of cross-validation analysis developed proves the robustness of the Ordinary Kriging model. ANN model based on multi layer perceptrons (MLPs) that are trained with Levenberg–Marquardt backpropagation algorithm has been adopted to train the model with 90% of the data available. The SVM is a novel type of learning machine based on statistical learning theory, uses regression technique by introducing loss function has been used to predict the reduced level of rock from a large set of data. In this study, a comparative study of three numerical models to predict reduced level of rock has been presented and discussed.  相似文献   
2.
Statistical learning algorithms provide a viable framework for geotechnical engineering modeling. This paper describes two statistical learning algorithms applied for site characterization modeling based on standard penetration test (SPT) data. More than 2700 field SPT values (N) have been collected from 766 boreholes spread over an area of 220 sqkm area in Bangalore. To get N corrected value (Nc), N values have been corrected (Nc) for different parameters such as overburden stress, size of borehole, type of sampler, length of connecting rod, etc. In three‐dimensional site characterization model, the function Nc=Nc (X, Y, Z), where X, Y and Z are the coordinates of a point corresponding to Nc value, is to be approximated in which Nc value at any half‐space point in Bangalore can be determined. The first algorithm uses least‐square support vector machine (LSSVM), which is related to a ridge regression type of support vector machine. The second algorithm uses relevance vector machine (RVM), which combines the strengths of kernel‐based methods and Bayesian theory to establish the relationships between a set of input vectors and a desired output. The paper also presents the comparative study between the developed LSSVM and RVM model for site characterization. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
3.
Performance of surface footing on geocell-reinforced soft clay beds   总被引:2,自引:0,他引:2  
This paper presents the results of laboratory model tests carried out to develop an understanding of the behaviour of geocell-reinforced soft clay foundations under circular loading. Natural silty clay was used in this study. The geocells were prepared using biaxial polymer grid. The performance of the reinforced bed is quantified using non-dimensional factors i.e., Bearing capacity improvement factor (If) and Percentage reduction in footing settlement (PRS). The test results demonstrate that the geocell mattress redistributes the footing load over a wider area thereby improving the performance of the footing. The load carrying capacity of the clay bed is increased by a factor of up to about 4.5 times that of unreinforced bed. From the pressure-settlement responses, it is observed that the geocell-reinforced foundation bed behaves as a much stiffer system compared to the unreinforced case indicating that a substantial reduction in footing settlement can be achieved by providing geocell reinforcement in the soft clay bed. The maximum reduction in footing settlement obtained with the provision of geocell mattress of optimum size placed close to the footing is around 90%. Further improvement in performance is obtained with provision of an additional planar geogrid layer at the base of the geocell mattress.  相似文献   
4.
Indian peninsular shield, which was once considered to be seismically stable, is experiencing many earthquakes recently. As part of the national level microzonation programme, Department of Science and Technology, Govt. of India has initiated microzonation of greater Bangalore region. The seismic hazard analysis of Bangalore region is carried out as part of this project. The paper presents the determination of maximum credible earthquake (MCE) and generation of synthetic acceleration time history plot for the Bangalore region. MCE has been determined by considering the regional seismotectonic activity in about 350 km radius around Bangalore city. The seismotectonic map has been prepared by considering the faults, lineaments, shear zones in the area and historic earthquake events of more than 150 events. Shortest distance from the Bangalore to the different sources is measured and then peak ground acceleration (PGA) is calculated for the different source and moment magnitude. Maximum credible earthquake found in terms of moment magnitude is 5.1 with PGA value of 0.146 g at city centre with assuming the hypo central distance of 15.88 km from the focal point. Also, correlations for the fault length with historic earthquake in terms of moment magnitude, yields (taking the rupture fault length as 5% of the total fault length) a PGA value of 0.159 g. Acceleration time history (ground motion) and a response acceleration spectrum for the corresponding magnitude has been generated using synthetic earthquake model considering the regional seismotectonic parameters. The maximum spectral acceleration obtained is 0.332 g for predominant period of 0.06 s. The PGA value and synthetic earthquake ground motion data from the identified vulnerable source using seismotectonic map will be useful for the PGA mapping and microzonation of the area.  相似文献   
5.
This paper examines the potential of least‐square support vector machine (LSVVM) in the prediction of settlement of shallow foundation on cohesionless soil. In LSSVM, Vapnik's ε‐insensitive loss function has been replaced by a cost function that corresponds to a form of ridge regression. The LSSVM involves equality instead of inequality constraints and works with a least‐squares cost function. The five input variables used for the LSSVM for the prediction of settlement are footing width (B), footing length (L), footing net applied pressure (P), average standard penetration test value (N) and footing embedment depth (d). Comparison between LSSVM and some of the traditional interpretation methods are also presented. LSSVM has been used to compute error bar. The results presented in this paper clearly highlight that the LSSVM is a robust tool for prediction of settlement of shallow foundation on cohesionless soil. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   
6.
Seismic site characterization is the basic requirement for seismic microzonation and site response studies of an area. Site characterization helps to gauge the average dynamic properties of soil deposits and thus helps to evaluate the surface level response. This paper presents a seismic site characterization of Agartala city, the capital of Tripura state, in the northeast of India. Seismically, Agartala city is situated in the Bengal Basin zone which is classified as a highly active seismic zone, assigned by Indian seismic code BIS-1893, Indian Standard Criteria for Earthquake Resistant Design of Structures, Part-1 General Provisions and Buildings. According to the Bureau of Indian Standards, New Delhi (2002), it is the highest seismic level (zone-V) in the country. The city is very close to the Sylhet fault (Bangladesh) where two major earthquakes (M w > 7) have occurred in the past and affected severely this city and the whole of northeast India. In order to perform site response evaluation, a series of geophysical tests at 27 locations were conducted using the multichannel analysis of surface waves (MASW) technique, which is an advanced method for obtaining shear wave velocity (V s) profiles from in situ measurements. Similarly, standard penetration test (SPT-N) bore log data sets have been obtained from the Urban Development Department, Govt. of Tripura. In the collected data sets, out of 50 bore logs, 27 were selected which are close to the MASW test locations and used for further study. Both the data sets (V s profiles with depth and SPT-N bore log profiles) have been used to calculate the average shear wave velocity (V s30) and average SPT-N values for the upper 30 m depth of the subsurface soil profiles. These were used for site classification of the study area recommended by the National Earthquake Hazard Reduction Program (NEHRP) manual. The average V s30 and SPT-N classified the study area as seismic site class D and E categories, indicating that the city is susceptible to site effects and liquefaction. Further, the different data set combinations between V s and SPT-N (corrected and uncorrected) values have been used to develop site-specific correlation equations by statistical regression, as ‘V s’ is a function of SPT-N value (corrected and uncorrected), considered with or without depth. However, after considering the data set pairs, a probabilistic approach has also been presented to develop a correlation using a quantile–quantile (Q–Q) plot. A comparison has also been made with the well known published correlations (for all soils) available in the literature. The present correlations closely agree with the other equations, but, comparatively, the correlation of shear wave velocity with the variation of depth and uncorrected SPT-N values provides a more suitable predicting model. Also the Q–Q plot agrees with all the other equations. In the absence of in situ measurements, the present correlations could be used to measure V s profiles of the study area for site response studies.  相似文献   
7.
Gujarat is one of the fastest-growing states of India with high industrial activities coming up in major cities of the state. It is indispensable to analyse seismic hazard as the region is considered to be most seismically active in stable continental region of India. The Bhuj earthquake of 2001 has caused extensive damage in terms of causality and economic loss. In the present study, the seismic hazard of Gujarat evaluated using a probabilistic approach with the use of logic tree framework that minimizes the uncertainties in hazard assessment. The peak horizontal acceleration (PHA) and spectral acceleration (Sa) values were evaluated for 10 and 2?% probability of exceedance in 50?years. Two important geotechnical effects of earthquakes, site amplification and liquefaction, are also evaluated, considering site characterization based on site classes. The liquefaction return period for the entire state of Gujarat is evaluated using a performance-based approach. The maps of PHA and PGA values prepared in this study are very useful for seismic hazard mitigation of the region in future.  相似文献   
8.
9.
The effect of aspect ratio on the mechanical behaviour and micromechanics of two different assemblies during drained triaxial shearing are reported in this paper. Discrete element simulations are done on two different sets of assemblies—first assembly consists of particles with aspect ratio 1.0 and second assembly consists of particles with aspect ratio 1.5. A log normal distribution of particle size is adopted for both the samples. The constitutive behaviour of the assemblies and the evolution of the microstructure of the samples under shearing are closely examined and is related to the aspect ratio of the particles constituting the assembly. The spherical harmonic distributions of contact forces and contact normals along with 3-D histograms are plotted to give quantitative information of the variation of these parameters as the loading progresses. The results indicate that as the aspect ratio increases, there is an increase in the maximum deviatoric stress at the macroscopic level. At the microscopic level, the values of the anisotropic coefficients which are representative of the microparameters also show an increase in the magnitude for the assembly with higher aspect ratio particles.  相似文献   
10.
In the present study, an attempt has been made to evaluate the seismic hazard considering local site effects by carrying out detailed geotechnical and geophysical site characterization in Bangalore, India to develop microzonation maps. An area of 220 km2, encompassing Bangalore Mahanagara Palike (BMP) has been chosen as the study area. Seismic hazard analysis and microzonation of Bangalore are addressed in three parts: in the first part, estimation of seismic hazard is done using seismotectonic and geological information. Second part deals with site characterization using geotechnical and shallow geophysical techniques. In the last part, local site effects are assessed by carrying out one-dimensional (1-D) ground response analysis (using the program SHAKE2000) using both standard penetration test (SPT) data and shear wave velocity data from multichannel analysis of surface wave (MASW) survey. Further, field experiments using microtremor studies have also been carried out for evaluation of predominant frequency of the soil columns. The same has been assessed using 1-D ground response analysis and compared with microtremor results. Further, the Seed and Idriss simplified approach has been adopted to evaluate the soil liquefaction susceptibility and liquefaction resistance assessment. Microzonation maps have been prepared with a scale of 1:20,000. The detailed methodology, along with experimental details, collated data, results and maps are presented in this paper.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号