首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   30篇
  免费   1篇
大气科学   1篇
地球物理   8篇
地质学   9篇
海洋学   8篇
天文学   3篇
自然地理   2篇
  2021年   1篇
  2020年   1篇
  2018年   2篇
  2016年   2篇
  2014年   1篇
  2013年   2篇
  2012年   1篇
  2011年   2篇
  2009年   6篇
  2008年   2篇
  2007年   1篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  1993年   1篇
  1984年   1篇
  1980年   1篇
排序方式: 共有31条查询结果,搜索用时 15 毫秒
1.
2.
Parameter calibration is one of the most problematic phases of numerical modeling since the choice of parameters affects the model’s reliability as far as the physical problems being studied are concerned. In some cases, laboratory tests or physical models evaluating model parameters cannot be completed and other strategies must be adopted; numerical models reproducing debris flow propagation are one of these. Since scale problems affect the reproduction of real debris flows in the laboratory or specific tests used to determine rheological parameters, calibration is usually carried out by comparing in a subjective way only a few parameters, such as the heights of soil deposits calculated for some sections of the debris flows or the distance traveled by the debris flows using the values detected in situ after an event has occurred. Since no automatic or objective procedure has as yet been produced, this paper presents a numerical procedure based on the application of a statistical algorithm, which makes it possible to define, without ambiguities, the best parameter set. The procedure has been applied to a study case for which digital elevation models of both before and after an important event exist, implicating that a good database for applying the method was available. Its application has uncovered insights to better understand debris flows and related phenomena.  相似文献   
3.
4.
Marine protected areas (MPAs) are aimed at managing and protecting marine environments. Their design, however, often disregards both a thorough knowledge of the distribution of habitats and assemblages and the use of proper experimental evaluations of the efficacy of MPAs by comparing protected vs. unprotected zones. About 200 MPAs have been recently instituted in the Mediterranean area, but the evidence of their efficacy is scant. The MPA of Torre Guaceto (Southern Adriatic Sea, Italy) is one of the rare cases of effective protection enforcement. The reserve was instituted more than 10 years ago, a period currently considered as sufficient to show responses by organisms to protection. The MPA is divided into a C zone, the general reserve, where many activities are permitted, a B zone, the partial reserve where restrictions increase and two A zones, the integral reserve where access is prohibited. The goals of the paper were to map the distribution of benthic assemblages to assess if they were properly represented in the differently protected zones, and to test the efficacy of protection by quantifying possible differences between the assemblages in two control areas and in the two A zones, where human impact is completely excluded. The analysis of habitat and assemblage distribution within the MPA showed that the zones with total protection do not include most valuable environmental types. Most of the considered variables (i.e. cover of substratum, number of taxa, and average abundance of the most common taxa) were not significantly different in and out of the A zones, at each time of sampling. Results, however, suggested a possible effect of protection in modifying patterns of abundance of sponges under Cystoseira canopy (more abundant in the fully protected zone). In the subtidal habitat, differences were found in the structure of the whole assemblage and in the abundance of encrusting coralline red algae (more abundant outside the fully protected area). Notwithstanding the correct general methodology employed in the study, a lack of statistical power could have a role in preventing the detection of ecologically relevant effects of protection. In some instances, data pooling allowed a discrimination between cases where there was clearly no effect of protection and cases where there might be. On this basis, the optimization of this experimental design should be considered in further studies. In any case, if the goals of MPAs have not been clearly stated, efficacy of protection might prove very difficult to test even with the use of sound experimental designs.  相似文献   
5.
The Eiffel Tower edifice is situated in the Lucky Strike hydrothermal vent field at a mean depth of 1690 m on the Mid‐Atlantic Ridge (MAR). At this 11‐m‐high hydrothermal structure, different faunal assemblages, varying in visibly dominant species (mussels and shrimp), in mussel size and in density of mussel coverage, were sampled biologically and chemically. Temperature and sulphide (∑S) were measured on the different types of mussel‐based assemblages and on a shrimp‐dominated assemblage. Temperature was used as a proxy for calculating total concentrations of CH4. Based on the physico‐chemical measurements, two microhabitats were identified, corresponding to (i) a more variable habitat featuring the greatest fluctuations in environmental variables and (ii) a second, more stable, habitat. The highest temperature variability and the highest maximum recorded temperatures were found in the assemblages visibly inhabited by alvinocaridid shrimp and dense mussel beds of large Bathymodiolus azoricus, whereas the less variable habitats were inhabited by smaller‐sized mussels with increasing bare surface in between. Larger mussels appeared to consume more ∑S compared with smaller‐sized (<1 cm) individuals and thus had a greater influence on the local chemistry. In addition, the mussel size was shown to be significantly positively correlated to temperature and negatively to the richness of the associated macrofauna. The presence of microbial mats was not linked to specific environmental conditions, but had a negative effect on the presence and abundance of macro‐fauna, notably gastropods. Whereas some taxa or species are found in only one of the two microhabitats, others, such as polychaetes and Mirocaris shrimp, cross the different microhabitats. Temperature was proposed to be a more limiting factor in species distribution than ∑S.  相似文献   
6.
7.
Perfluorinated compounds (PFCs), widely used for their hydro-oil repellent properties, are almost non-degradable in the environment; there is scientific evidence that indicate bioaccumulation. They represent a threat to many organisms, because they are toxic and are endocrine disruptors. Scientific studies have demonstrated the presence of PFCs in blood and liver samples of fish, turtles, birds and mammals of marine ecosystems in different geographical areas. The aim of this study was to determine the distribution of PFOS and PFOA in blood samples of the marine turtle Caretta caretta, using a minimally invasive sampling procedure. 49 blood samples of marine turtle, taken from several Italian marine turtle rescue centers, were analyzed. While PFOA was never detected, measurable concentrations of PFOS were found in 15 blood samples; the values show a range from 1.14 ng/g to 28.51 ng/g (wet wt.). No differences between groups of samples taken from different areas were found.  相似文献   
8.
Abstract

A central problem in spatial analysis is the mapping of data for complex spatial fields using relatively simple data structures, such as those of a conventional GIS. This complexity can be measured using such indices as multi-scale variance, which reflects spatial autocorrelation, and multi-fractal dimension, which characterizes the values of fields. These indices are computed for three spatial processes: Gaussian noise, a simple mathematical function, and data for a random walk. Fractal analysis is then used to produce a vegetation map of the central region of California based on a satellite image. This analysis suggests that real world data lie on a continuum between the simple and the random, and that a major GIS challenge is the scientific representation and understanding of rapidly changing multi-scale fields.  相似文献   
9.
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号