首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   89篇
  免费   0篇
  国内免费   2篇
地球物理   4篇
地质学   85篇
自然地理   2篇
  2021年   1篇
  2018年   7篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   2篇
  2013年   12篇
  2012年   1篇
  2011年   22篇
  2010年   3篇
  2009年   2篇
  2008年   5篇
  2007年   5篇
  2006年   1篇
  2004年   7篇
  2003年   1篇
  2002年   2篇
  2001年   1篇
  2000年   5篇
  1999年   6篇
  1998年   1篇
  1993年   1篇
  1992年   1篇
排序方式: 共有91条查询结果,搜索用时 15 毫秒
1.
The indoor exhibit of the Market Gate of Miletus is unique for an archaeological monument. The reconstruction of the gate was done in such a way that most marble fragments were removed leaving cored marble columns 3–4 cm in thickness. These cored columns were mounted on a steel construction and filled with different mortars or filled with specially shaped blocks of brick combined with mortar. All the missing marble elements were replaced by copies made of a Portland cement based concrete, which is compositionally similar to the original building materials. During the Second World War the monument was heavily damaged by aerial bombardment. For 2 years the Market Gate of Miletus was exposed to weathering, because a brick wall protecting the gate was also destroyed. The deterioration phenomena observed are microcracks, macroscopic fractures, flaking, sugaring, greying, salt efflorescence, calcitic-sinter layers and iron oxide formation etc. The rapid deterioration seems to be due to indoor atmospheric effects, and also by a combination of incompatible materials (e.g. marble, steel, mortar, concrete, bricks etc.). Compatible building materials like mortars or stone replacing materials have to be developed for the planned restoration. The requirements for restoration mortars are chemical-mineralogical and physical-mechanical compatibilities with the existing building materials. In detail this means that the mortar should ensure good bonding properties, adapted strength development and not stain the marble when in direct contact. The favoured mortar was developed with a hydraulic binder based on iron-free white cement and pozzolana based on activated clay. A special limestone and quartz sand mixture was used as an aggregate. The cement was adjusted using chemical additives. Specially designed tests were applied extensively to prove whether the developed mortar is suitable for the restoration of this precious monument.  相似文献   
2.
In order to constrain the temporal relationship between granite (sensu lato) emplacement and metamorphism, isotope work was carried out on the minerals zircon and apatite (U-Pb), garnet (Pb-Pb) and hornblende (Ar-Ar) from wall rock samples in the Shamva area in Zimbabwe. The area, encompassing parts of the Chinamora and Murehwa batholiths and a wedge-shaped greenstone belt segment in between, is commonly quoted in the literature as an example illustrating pluton emplacement processes and deformational models for the Archean. New U-Pb dating of apatite from a boudinaged pegmatite within mafic schists in the batholith-greenstone contact zone has yielded an age of 2619 +28/-24 Ma. This age is interpreted as the best estimation of the intrusion age of this unit, depending on the assumed closure temperature, and provides an upper age limit for the syntectonic emplacement of the now gneissic granites. Pb-Pb dating of late kinematic garnets in cordierite-bearing rocks within the greenstone belt wall rocks gives an age of 2623NJ Ma. Together, this timing of relatively late, syntectonic plutonism and metamorphic mineral growth at ca. 2.62 Ga compares well with existing zircon crystallization ages for felsic volcanics (2645dž Ma, 2643NJ Ma) and post-tectonic porphyritic monzogranites (2601ᆢ Ma). Ar-Ar hornblende ages for mafic schists from different areas within the greenstone belt wall rocks range between 2621 and 2498 Ma and have been interpreted to indicate mixing between metamorphic ages and cooling ages. The data support a geological model whereby volcanism and sedimentation are associated with an early phase of regional deformation at ca. 2.64 Ga, which may have started earlier and lasted longer, and evolves into the voluminous emplacement of granites (now gneissic granites) in the batholiths at approximately 2.62 Ga. Emplacement of post-tectonic tabular monzogranites takes place at ca. 2.60 Ga.  相似文献   
3.
Extreme uplift associated with the formation of the 2.02 Ga Vredefort dome has exposed a substantial cross section through the crystalline early Archean basement complex rocks of the Kaapvaal craton. The rocks comprise polydeformed high-grade tonalite-trondhjemite-granodiorite (TTG) gneisses, migmatites and late-tectonic intrusive granitoids that straddle the upper amphibolite-to granulite-facies transition. Field, petrographic and geochemical data indicate that compositional heterogeneity occurs on a local scale and reflects the migmatitic character of the rocks rather than crustal-scale layering as has been previously proposed. No evidence has been found to support exposure of either a melt-depleted, refractory, lower crust or an upper crustal batholithic granite layer; however, the immense volume of granitic leucosome in the rocks suggests that the exposed section represents an intermediate level between these two zones. Granitic leucosomes in the upper amphibolite-facies migmatites appear to be intrusive into the predominantly trondhjemitic host rocks, rather than of in situ derivation. Leucosome compositions in the granulite-facies migmatites are more variable, ranging from granitic and charnockitic to enderbitic, probably reflecting at least some local derivation. Leucosomes and small granitoid bodies show local-scale geochemical variation that can be explained in terms of variable amounts of melt segregation and migration, and fractionation of minerals such as K-feldspar within the melts.  相似文献   
4.
High levels of SO2 and particulate pollution enable the rapid development of gypsum-rich weathering crusts in Budapest. Two types of white crusts, thin and thick ones, and two forms of black crusts, laminar and framboidal ones, were studied in limestone buildings of the parliament and Citadella. The percentage of crust cover and damage categories were documented on selected walls. Petrographic, XRD, XRF and sulphur isotope analyses were performed under laboratory conditions to understand the mechanism of crust formation. White crusts found both on exposed and sheltered walls display a calcite-rich layer with gypsum, while black crusts are enriched with gypsum. The sulphur isotopic composition of white and black crusts overlaps, but the crusts are slightly enriched in heavy isotopes compared to rainwater. S content, Si/Al ratios and particulates in black crusts suggest that air pollution (SO2, dust) contributes to black crust formation. The accumulation of sulphur and Zn enrichment of white crusts were also documented indicating that under high pollution levels, even these compound can accumulate on exposed facades.  相似文献   
5.
6.
In the southernmost Dom Feliciano Belt of Uruguay, highly fractionated calc-alkaline granites, mildly alkaline granites, shoshonitic volcanics, and peralkaline intrusions and volcanics are spatially and temporal associated with the evolution of shear zones. Four representative magmatic unites of this diverse association were petrographic and geochemically investigated: the Solís de Mataojo Complex, a medium to high K2O calc-alkaline granite with signature typical of mature continental arcs and post-collisional settings; the Maldonado granite, highly fractionated calc-alkaline to alkaline, with characteristics that are transitional between both types of series; the Pan de Azúcar Pluton, with characteristics typical of post-collisional alkaline granites and the Las Flores shoshonitic basalts.

Geochemistry and geotectonic setting point out that slab breakoff was most likely the mechanism associated with the generation of high-K calc-alkaline magmas (Solís de Mataojo and Maldonado) shortly after collision. Extension associated to the formation of molassic basins and emplacement of dolerites and basalt flows with shoshonitic affinity (Las Flores) 15and finally a shift to magmas with alkaline signatures (Pan de Azúcar) simultaneous with a second transpressional phase were probably linked with lithospheric thinning through delamination. This evolution took place between 615 and 575 Ma, according to available data. Contrary to previous proposals, which considered this magmatism to represent the root of a continental magmatic arc, a post-collisional environment, transitional from orogenic to anorogenic, during transcurrent deformation is proposed.  相似文献   

7.
8.
The elastic properties of cordierite, a common volatile-bearing metamorphic mineral, were measured using Brillouin spectroscopy under ambient conditions. We obtain a bulk modulus of KS =129(1) GPa, and a shear modulus of G=54.0(4) GPa. The bulk modulus of cordierite is much larger than those of other crustal framework silicates (e.g., quartz and feldspars), but is similar to KS for denser upper mantle phases such as olivine. This is likely a result of the cordierite crystal structure, as suggested by a similarly high value of KS for minerals with closely related structures. Cordierite has an unusually high K/G ratio of about 2.4, and a Poisson’s ratio of 0.31,which may be a diagnostic seismic properties of areas in which cordierite-rich metamorphic rocks occur. The overall velocity anisotropy of cordierite is relatively low (<14%) in comparison with many other metamorphic minerals. Calculated velocities for a representative lower crustal rock suggest that cordierite is not likely to explain the high seismic anisotropy observed in some lower crustal sections. Cordierite would have a strong influence on the bulk seismic anisotropy only in rocks where it is present in large concentrations and has a strong preferred orientation. Although such rocks are known to occur, they are uncommon. Received: 23 Deceber 1997/ Revised, accepted: 12 October 1998  相似文献   
9.
The Isla Cristalina de Rivera crystalline complex in northeastern Uruguay underwent a multistage magmatic and metamorphic evolution. Based on SHRIMP U–Pb zircon, Th–U–Pb monazite (CHIME-EPMA method) and K–Ar age data from key units several events can be recognized: (1) multistage magmatism at 2,171–2,114?Ma, recorded on zircon of the granulitic orthogneisses and their 2,093–2,077?Ma overgrowths; (2) a distinct amphibolite facies metamorphism at ~1,980?Ma, recorded by monazite; (3) greenschist facies reworking and shearing at ca. 606?Ma (monazite and K–Ar on muscovite) along the Rivera Shear Zone, and finally (4) intrusion of the post-tectonic Sobresaliente and Las Flores granites at around 585?Ma. Lithological similarities, geographic proximity and coeval magmatic and metamorphic events indicate a similar tectonometamorphic evolution for the Isla Cristalina de Rivera, the Valentines Block in Uruguay and the Santa María Chico Granulitic Complex in southern Brazil, since at least 2.1?Ga.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号